首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
为研究动态轨距优化技术在重载道岔上的应用,以轮轨型面测量仪在大秦线上测得的数据为基础,建立三维弹塑性接触有限元模型,研究JM3型机车车轮和LM型货车车轮与CHN75钢轨12号单开道岔曲线尖轨接触问题,详细的分析了轨距加宽前后以及不同轨距加宽方案等多种工况下车轮与尖轨接触等效应力和接触斑变化.计算结果表明,轨距加宽后磨耗中期的LM货车车轮与尖轨接触时,接触应力明显降低,有利于减缓尖轨磨耗;货车车轮与尖轨接触的接触斑面积在各个位置处得到了大幅提高,由此可以看出转辙器动态轨距加宽技术有利于改善LM型货车车轮过岔时的轮轨接触作用,减轻尖轨磨耗和滚动接触疲劳;对比讨论不同的轨距加宽方案的计算结果可知,既有的轨距加宽方案相较于其它方案有比较理想的效果,计算结果为尖轨几何参数优化及设计,减轻尖轨磨耗,延长使用寿命提供了参考依据.  相似文献   

2.
针对高速动车通过曲线时轮轨磨耗问题,利用现场实际测量的不同磨耗阶段动车车轮型面,建立高速列车通过曲线的多体动力学模型和曲线段轮轨接触的有限元模型,计算了不同磨耗程度车轮通过曲线时的磨耗功率、垂向、横向动载荷变化规律,并且对比了动载荷和理论载荷下轮轨间接触等效应力.分析结果表明:动车通过曲线时轮轨间的磨耗功率、横向力和横向蠕滑力等参数都随着车轮型面磨耗程度的增大而增大;标准型面到踏面磨耗量达到0.54 mm的过程为剧烈磨耗阶段,踏面磨耗量由0.54 mm增加到1.5 mm过程过为磨耗稳定期;可以根据磨耗Ⅰ型面对车轮型面进行优化,从而延长动车车轮的稳定磨耗阶段.  相似文献   

3.
重载货车车轮磨耗仿真   总被引:1,自引:0,他引:1  
以装用转K6型转向架的C80型货车为例,在SIMPACK软件中建立车辆动力学模型,采用LM型车轮型面和75 kg.m-1级钢轨型面匹配,并根据大秦线实际情况建立线路模型。基于FASTSIM算法和Zobory踏面磨耗模型,对重载货车车轮磨耗进行仿真分析,并与现场实测结果进行对比。研究结果表明:磨耗主要发生在踏面上-50~45 mm范围内,轮缘处磨耗最大,在轮缘根部磨耗最小;随着运营里程的增加,轮缘和滚动圆处的磨耗速度变慢;踏面垂直磨耗量的仿真结果小于现场实测结果;车轮磨耗后,车辆临界速度下降,空车临界速度下降13~18 km.h-1,重车临界速度下降2~8 km.h-1。  相似文献   

4.
针对重载道岔尖轨磨耗问题,利用轮轨型面测量仪测量不同磨耗时期的机车车轮型面,建立机车车轮与不同位置道岔尖轨三维有限元接触模型,进行弹塑性计算,分析不同轮轨匹配状态与尖轨磨耗规律,研究尖轨加强技术对轮轨匹配的影响.计算结果表明:标准轮轨接触时,尖轨上接触斑呈狭长条状,接触面积小,尖轨2 m位置处等效应力达到最大值790.8 MPa,其磨耗情况最严重;不同磨耗车轮与尖轨接触时,磨耗中期车轮与尖轨接触情况较好,磨耗末期车轮与尖轨接触情况较差,使得尖轨磨耗加剧;采取切削基本轨加厚尖轨的技术,可提高轮轨之间的接触斑面积,减小其等效应力,进而提高尖轨的使用寿命.  相似文献   

5.
通过现场测试沈阳地铁某区间打磨作业现场打磨前后钢轨型面数据,将钢轨型面数据导入到SIMPACK软件中,还搜集到了国内关于打磨车作业标准中关于打磨后钢轨型面的数据.并且建立了车辆-轨道动力学模型,分别计算了打磨前后不同钢轨型面下车辆平稳性、轮对横移量、磨耗功率,结果表明:钢轨打磨可以提升车辆运行的平稳性,降低车轮磨耗功率,从而降低轮轨磨耗,延长钢轨使用寿命.  相似文献   

6.
针对重载铁路固定辙叉心轨磨耗严重问题,且不同车轮型面对其影响不同,对一个镟修周期内的重载货车车轮进行跟踪测试,选出5条有代表性的车轮型面,应用其与标准75 kg/m钢轨12号道岔距离理论尖端360与480 mm位置处的固定辙叉型面建立轮叉弹塑性接触有限元模型,计算分析轮叉之间的接触斑与等效应力情况,得出不同车轮型面通过固定辙叉的过渡位置不同,随着车轮的磨耗,轮叉之间的等效应力逐渐增大,且均超过了材料的屈服极限,使车轮与辙叉进入塑性变形阶段.  相似文献   

7.
为研究不同车轮踏面与不同钢轨型面的匹配关系,分别从轮轨接触几何参数、轮轨静态接触力学性能、车辆运行稳定性和磨耗方面进行对比分析.CONTACT轮轨接触模型和SIMPACK多体动力学模型的计算结果表明,由于60N轨面将轨头部分进行了改进,轮轨接触光带居中,车辆运行稳定性趋于优化;两种车轮踏面与60N轨面匹配时具有更优的黏滑区比例,能有效减小轮轨间的损伤和磨耗;LMA踏面和小位移下的S1002CN踏面与60N轨面匹配时接触应力较大,易造成较大的垂向磨耗;对于S1002CN踏面与60N轨面匹配的情形,在横移量4~8 mm时的接触应力小于其与60 kg/m轨面匹配时的数值,有利于降低曲线线路轮轨间磨耗.由此可见,60N轨面与动车组车辆踏面的接触关系更利于改善车辆的运行稳定性,但过于集中的轮轨接触点对加剧了钢轨的垂向磨耗.  相似文献   

8.
为了研究重载机车轮轨接触损伤问题,建立重载列车-轨道三维耦合动力学模型,研究车轮多边形与多种轨面摩擦条件下的机车轮轨系统动态相互作用行为.在此基础上,建立基于轮轨系统动力学响应的车轮踏面疲劳损伤预测模型,研究制动工况和轮轨接触表面变摩擦条件下车轮多边形磨耗对车轮表面磨损的影响.结果表明:严重的车轮多边形磨耗不仅加剧轮轨动态相互作用,也会增大轮轨接触界面磨耗损伤;在干燥接触条件下,车轮多边形会加剧车轮踏面疲劳损伤,车轮多边形导致机车第1位轮对和第4位轮对的损伤指数波动范围较正常车轮损伤指数的波动范围增大19.59%和39.43%;在低黏着接触条件下,车轮多边形会加剧车轮磨耗,车轮多边形导致轮轨蠕滑力波动增大5.85倍,使得机车第1位轮对和第4位轮对的磨耗数波动范围增大6.44倍和6.22倍.  相似文献   

9.
为研究尖轨几何参数对尖轨磨耗的影响,以轮轨型面测量仪在大秦线上测得的数据为基础,建立三维弹塑性接触有限元模型,研究LM型货车车轮与CHN75钢轨12号单开道岔曲线尖轨接触问题,详细的分析了不同轨底坡和尖轨轨头型面等多种工况下车轮与尖轨接触等效应力和接触斑变化.计算结果表明,1∶40轨底坡尖轨最大等效应力在不同位置变化波动较小,且应力值较小,更有利于LM踏面和尖轨接触时降低接触应力,减缓尖轨磨耗;型面改进优化后的尖轨各个位置接触斑面积得到大幅度提高,部分位置接触应力降低,很大程度上降低了滚动接触疲劳伤损和尖轨磨耗.计算结果为尖轨几何参数优化及设计,减轻尖轨磨耗,延长使用寿命提供了参考依据.  相似文献   

10.
两种类型踏面的车辆与轨道耦合动力学性能比较   总被引:8,自引:1,他引:8  
采用车辆-轨道耦合动力学理论及其相应的动力学仿真软件TTISIM,分别对锥形(TB型)和磨耗形(LM型)踏面车辆与轨道的动力学性能进行理论仿真计算,并对计算结果进行了详细的比较。结果表明:LM型跳面有利于车辆动态曲线通过;TB型踏面对提高车辆蛇行失稳临界速度有利;两种类型踏面车轮对车辆在直线轨道上的平稳性差别甚小。  相似文献   

11.
为了分析地铁车辆常用的LM型踏面、内侧距1 358 mm和1 360 mm的S1002型车轮踏面分别与60 kg/m钢轨匹配特性.进行了轮轨接触几何、非赫兹滚动接触、车辆轨道耦合动力学计算.轮轨接触分析表明,LM轮轨接触点能够均匀分布于钢轨型面,轮对等效锥度随轮对横移呈增大关系,接触斑面积偏小、最大等效接触应力偏大、磨...  相似文献   

12.
重载铁路及客货共线铁路运营条件下,轮轨磨耗问题尤为突出. 为了有效减缓轮轨磨耗发展,以不同接触条件下轮轨廓形共形度最优为原则,设计目标函数及约束条件,建立钢轨廓形非线性优化数学模型,并基于序列二次规划法进行求解,提出60 kg/m钢轨廓形的优化方案;从轮轨接触几何关系、车辆-轨道系统动力作用、磨耗的角度对优化廓形的优化效果进行了对比分析. 结果表明:1) 所提出的60 kg/m钢轨优化廓形相对于原始廓形使目标函数值降低了50%,与LM车轮廓形具有更高的共形度水平;2) 优化廓形的轮轨接触点分布更为均匀,在轮对横移量较小的条件下轮径差更小,在轮对横移较大的条件下轮径差更大;3) 优化廓形对车辆运行安全性和平稳性无显著影响,可有效增大轮轨接触面积达11.24%,降低接触应力达20.42%,减缓轮轨磨耗发生发展速率.   相似文献   

13.
为设计可提升列车小半径曲线通过性能的钢轨非对称打磨目标廓形,对中国现有CN60钢轨廓形进行了几何推导;以钢轨廓形几何参数作为设计变量,以车辆系统多体动力学指标作为综合目标函数,考虑钢轨打磨约束条件,提出了一种针对小半径曲线钢轨非对称打磨廓形的多目标数值优化模型;基于差分进化算法编写了相应的数值计算程序,并选择合理的计算参数求解了优化模型;根据实际线路参数分析了优化后钢轨打磨廓形的轮轨接触几何特性,并验证了列车的小半径曲线动力学性能。研究结果表明:提出的优化方法具有较快的计算速度,优化模型仅迭代了97次即可获得理想的钢轨打磨廓形;非对称打磨使内外钢轨具有差异性的打磨位置与打磨深度,将轮轨对中位置向轨道内侧移动了约10 mm,且不会改变轮缘处的轮轨匹配特性,有效增大了轮对横移10 mm范围内的轮对滚动圆半径差与轮轨接触角差,降低了列车在通过小半径曲线时的轮对横移、轮轨横向力、脱轨系数和轮重减载率,提高了转向架的横向稳定性和轮轨磨耗性能;虽然该打磨方式获得的钢轨廓形增大了轮轨接触应力,但并不会引起轮轨塑性变形。由此可见,该设计方法为提高列车的中小半径曲线通过能力提供了一种可行途径。   相似文献   

14.
为揭示高速列车车轮踏面非圆磨耗的产生机理,控制高速列车车轮的非圆磨耗,基于高速列车在雨、雪条件下调速制动可能发生轮轨滑动的特点,建立了由轮对和钢轨组成的轮轨系统摩擦自激振动模型,使用该模型对轮轨系统进行了摩擦自激振动发生趋势的仿真分析.仿真结果表明,在轮对调速制动轮轨蠕滑力达到饱和(即滑动)状态下,轮轨系统容易发生摩擦自激振动,此摩擦自激振动能引起车轮非圆磨耗,并提出控制高速列车调速制动时的制动摩擦力使轮轨不发生滑动是抑制车轮非圆磨耗的主要措施,增大钢轨扣件垂向阻尼是控制高速列车车轮非圆磨耗的可行方法.   相似文献   

15.
基于车辆-轨道耦合动力学理论,根据中国最近研制的27 t轴重侧架交叉支撑转向架及C80E型通用敞车的实际结构和重载铁路曲线轨道结构特点及其技术规范要求,建立了曲线轨道的重载铁路货车-轨道耦合动力学模型;基于新型快速数值积分方法、Hertz非线性弹性接触理论和Shen-Hedrick-Elkins非线性轮轨蠕滑理论,应用计算机仿真计算了不同工况下重载货车曲线通过时的轮轨耦合动力特性,分析了曲线半径、缓和曲线长度和外轨超高等曲线几何参数对重载货车轮轨动力作用的影响。分析结果表明:曲线半径在400~800 m范围内变化时对轮轨动力影响极为明显,而当曲线半径大于800 m后其影响逐渐弱化,重载铁路曲线半径一般不应小于800 m;增加缓和曲线长度能在一定程度上降低重载货车轮轨动力作用,但其作用效果存在长度拐点,拐点前效果明显,拐点后影响甚微,且曲线半径和运行速度都会影响拐点的具体位置,建议根据拐点位置来确定不同曲线半径线路的最小缓和曲线长度;过大的欠超高或过超高均会加剧重载货车曲线通过时的轮轨动力作用,但在欠超高为-20~0 mm时重载货车的综合轮轨动力响应相对较小,即保持货车以适当的欠超高(-20~0 mm)通过曲线有利于降低轮轨动力和磨耗,这与中国铁路工程运输实际设置的欠超高取值范围一致。   相似文献   

16.
为了研究高速列车车轮踏面不圆度的安全限值,基于车辆轨道垂横向耦合动力学理论,采用车辆动力学仿真分析软件ADAMS/Rail,建立了考虑车轮非圆化状态下的整车车辆/轨道空间耦合动力学模型。分析计算高速运行状态下常见车轮踏面不圆顺问题所导致的车辆轨道系统轮轨冲击振动特征,及其随列车运行速度的变化规律,给出了车速200~350 km/h 时轮轨作用力响应峰值与车轮不圆度之间的关系,确定了高速行车条件下车轮不圆度的临界范围。该研究可为基于轮轨作用力监测的车轮不圆顺状态识别提供理论指导。  相似文献   

17.
轮轨力连续测试系统设计   总被引:3,自引:0,他引:3  
根据轮轨力作用下钢轨的受力特点,设计了采用测力钢轨的轮轨力连续测试系统,并通过仿真确定了垂向和横向轮轨力耦合作用下轮轨力计算方程式和相关因数.通过在试验线上的测试,表明该系统可同时连续测出垂向和横向轮轨力.  相似文献   

18.
为研究车轮材料对轮轨匹配行为的影响,在MMS-2A型轮轨磨损试验机上模拟研究了U71Mn热轧钢轨和4种不同车轮材料的摩擦磨损行为.采用电子分析天平测量试样磨损量,采用SEM对试样进行微观分析.结果表明:随着车轮含碳量升高,车轮硬度升高,车轮的磨损量逐渐降低,而与之匹配的钢轨磨损量逐渐升高;轮轨试样的磨痕粗糙程度与磨损程度相关,磨损越严重,磨痕越粗糙;轮轨试样的硬度比决定轮轨试样的磨损机制,轮轨硬度比较低时,主要以磨粒磨损为主,磨损最严重,当轮轨硬度比继续升高,主要以疲劳磨损为主,磨损降低,当轮轨硬度比接近1.1时,轮轨氧化达到最严重,主要以氧化磨损为主.   相似文献   

19.
一系垂向悬挂对重载货车轮轨动力作用的影响   总被引:1,自引:0,他引:1  
为了实现机车车辆低动力作用,基于车辆/轨道耦合动力学原理,应用车辆与线路最佳匹配设计方法和车辆/轨道空间耦合动力学模型,仿真分析了重载货车一系垂向悬挂对轮轨动力作用的影响,优化了一系悬挂参数,降低了重载货车轮轨动力的相互作用.研究结果表明:一系垂向刚度对车辆轮轨动力作用影响甚微,一系垂向阻尼在高量值范围增加阻尼值,减轻轨道结构的振动,加剧车辆本身振动;重载货车一系垂向阻尼取50~500 kN.s/m为宜.  相似文献   

20.
为了弥补42号高速道岔钢轨磨耗规律理论研究的不足,建立了高速道岔钢轨磨耗发展的理论预测模型. 基于Archard材料磨损理论和车辆-道岔耦合动力学仿真分析进行钢轨磨耗深度分布计算;采用了一种自适应步长算法对岔区各特征位置钢轨型面进行更新,可有效减少误差累积、改善数值模型稳定性;基于理论预测模型研究了42号高速道岔尖轨和基本轨的磨耗分布和发展规律. 研究的主要结论如下:1) 直向过岔时,轮载过渡发生于35.0~50.0 mm断面之间;在轮载过渡前磨耗发展缓慢加快,轮载过渡区段磨耗发展迅速加剧,轮载过渡完成后磨耗发展有所减缓. 2) 侧向过岔时,列车进岔后很快就开始贴靠曲尖轨运行,9.1 mm断面即出现侧磨;随着曲尖轨逐渐加宽,尖轨轨肩始终存在较严重磨耗,直基本轨虽主要承担轮载,但磨耗相对曲尖轨要小得多;轮载过渡开始后曲尖轨磨耗分布变宽,轨肩磨耗显著减小,至全断面后曲尖轨磨耗再次显著减小;曲基本轨磨耗均主要分布于轨头中部,轮载过渡前磨耗发展逐渐加快,过渡开始后磨耗发展减缓.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号