首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 687 毫秒
1.
兰新客运专线动车组车轮多边形磨耗的机理   总被引:4,自引:1,他引:3  
由于兰新客运专线的线路复杂环境,动车组车轮多边形磨耗现象严峻,加大了列车运行过程中的轮轨作用力,影响了乘客舒适性,给高速列车的安全运行造成极大威胁. 为解决上述问题,基于长期跟踪客运专线获得的车轮多边形磨耗规律以及摩擦自激理论的观点,建立了轮对-钢轨-轨道板摩擦耦合自激振动模型,通过复特征值分析方法来研究车轮多边形磨耗的形成原因及其发展规律. 研究结果表明,在直线线路上,轮轨间蠕滑力饱和引起的摩擦自激振动易导致车轮第15~16阶多边形磨耗;在制动系统和轮轨系统耦合的情况下,动力轮对和非动力轮对对应的不稳定振动频率分别容易引起第23~24阶和第22~23阶车轮多边形磨耗;轮轨之间的黏着系数变大可能是导致冬春季车轮多边形发展速度较夏季快的重要原因.   相似文献   

2.
为了探究高速铁路制动区间的典型钢轨波磨现象,基于轮轨摩擦自激振动诱导钢轨波磨的观点展开了研究,通过武广高速铁路制动区段的现场调研,掌握该区段的波磨特征并采集相应的轨道不平顺;基于轮轨摩擦自激振动诱导钢轨波磨的观点分别建立制动区段高速列车的动/拖车轮对-轨道-制动系统的有限元模型,并利用复特征值法进行动/拖车轮轨系统的摩擦自激振动分析,比较动/拖车轮轨系统在制动和非制动工况下系统发生摩擦自激振动的可能性,以及在制动工况下动车轮轨和拖车轮轨系统的摩擦自激振动情况;使用控制变量法研究了制动系统摩擦系数和扣件垂向刚度对动/拖车轮轨系统摩擦自激振动的影响规律.研究结果表明:制动工况更容易引起系统的摩擦自激振动;拖车轮轨系统更容易引起系统摩擦自激振动;控制制动装置摩擦系数约为0.30,扣件垂向刚度约为50 MN/m时能一定程度降低轮轨系统发生摩擦自激振动的可能性,进而抑制钢轨波磨的产生.  相似文献   

3.
为了研究高速列车车轮偏心磨耗的形成机理,根据现场测试和多体动力学仿真结果,建立了高速列车车轮-钢轨系统有限元模型,采用瞬时动态仿真分析了车轮残余静不平衡对轮轨法向接触力的影响;对最高速度为250 km?h-1动车组列车的运营速度进行现场测试,计算了列车匀速运行区间的平均速度;基于摩擦功周期性波动引起轮轨非均匀磨耗的观点...  相似文献   

4.
为更深入全面了解高速列车系统动力学研究现状,综述了高速列车动力学性能对车辆运行稳定性、安全性和平稳性的影响,总结了列车安全评价方法和动力学试验方法在车辆动力学中的应用,基于轮轨间作用力,分析了轮轨磨耗对列车动力学性能的影响,概括了车-桥耦合模型、弓网系统以及列车空气动力模型在车辆系统动力学中的研究内容。分析结果表明:车轮异常磨耗会导致舒适性下降,合理的车轮镟修能有效降低车轮非圆化和车辆系统关键部件的振动,降低车内振动噪声,增加列车运行稳定性、安全性和平稳性;合适的轮对定位刚度和抗蛇行减振器的刚度和阻尼有利于提高列车蛇行运动稳定性和转向架运动临界速度;钢轨波磨严重时会导致钢轨扣件松动,缩短车辆构架和钢轨的使用寿命;通过合理的钢轨廓型打磨可消除曲线波磨,改善轮轨关系;行波效应对车辆安全性影响很大,与相同激励下的各项参数相比,车速为350 km·h-1、行波速度为300 m·s-1时的脱轨系数、轮重减载率和轮轨横向力都有所降低;横风作用下受电弓气动抬升力增大,影响接触网安全,增大弓头阻尼和弓头刚度可改善弓网受流特性。   相似文献   

5.
为研究高速列车制动区段制动结构/轨道结构对轮对-轨道-制动系统摩擦自激振动的影响,首先,结合现场调研,建立CRH3高速列车轮对-轨道-制动系统有限元模型;然后,采用复特征值法研究考虑轮轨粘滑和制动滚滑作用下的轮对-轨道-制动系统的摩擦自激振动特性;进而探究制动结构中表面织构对整个系统摩擦自激振动特性的影响;最后,对轨道结构中扣件参数进行参数化分析,并采用最小二乘法和粒子群算法求得抑制钢轨波磨的扣件参数的最优解.研究结果表明:高速列车在制动区段时,轮轨粘滑和制动滚滑作用导致的轮对-轨道-制动系统摩擦自激振动的主要频率为526.75 Hz,与现场波磨特征频率接近,说明轮对-轨道-制动系统的摩擦自激振动可能是该区段钢轨波磨的主要诱因;采用具有表面织构的闸片或制动盘能有效抑制制动区段的钢轨波磨,其中沟槽型闸片的抑制效果最佳;当扣件的垂向刚度为65.5 MN/m,横向刚度为46.0 MN/m,垂向阻尼为84.0 kN·s/m和横向阻尼为23.5 kN·s/m时,可以抑制高速列车制动区段的钢轨波磨.  相似文献   

6.
高速铁路在我国迅速的发展,显著改善了人民的出行方式和质量,大幅度缩短了出行周期,充分提高了工作效率.我国的高速铁路网已成为"国民经济建设高速发展的大动脉",但运营中的高速列车车轮因连续磨耗和定期的镟修,轮径不断缩小且在缩小的不同阶段发生不同程度的非圆化磨损现象,某些阶段还十分严重.列车车轮非圆化磨耗会使轮轨间作用力显著增大,导致铁路车辆和轨道产生强烈的振动和噪声,影响车辆的运行品质、旅客乘坐舒适度和车辆-轨道系统零部件的使用寿命,严重时将会威胁到行车安全.车轮各类非圆化磨耗类型,主要分为局部非圆化磨耗和全周非圆化磨耗,其中局部非圆化磨耗主要包括扁疤、剥离、脱层、塌陷等局部异常磨耗,全周非圆化磨耗主要为车轮多边形磨耗.近几年,在我国各类型高速动车组列车上均发现车轮多边形磨损,在车轮全寿命周期内的不同轮径情况下,多边形磨损的边数(波长)和发展速度不同,已经越来越受到行业内相关研究人员的重视.文章详细地综述了国内外对铁路车辆车轮非圆化磨耗的研究历史和现状,涉及到相关研究文献75篇,对车轮非圆化磨耗的研究主要分为3个方面:(1)车轮非圆化磨耗对车辆/轨道系统动力学行为、车辆噪声的影响研究,大量研究表明车轮非圆化幅值、波长、车速和轴重等因素对车辆/轨道系统动力学行为和车辆噪声均有显著的影响.(2)列车车轮非圆化磨耗发展规律研究和列车车轮多边形磨耗机理研究.车轮多边形磨耗产生的根源在于转向架系统的高频柔性共振,系统的共振频率、列车速度和车轮的周长在满足一定的条件下,车轮多边形磨耗发展速率较高,轮轨滚动接触界面严重的不平顺激励,将促使多边形磨损萌生和发展.到目前为止,对于车轮多边形磨耗发生和发展的机理,国内外仍众说纷纭,未达成共识,尚待开展进一步的研究工作.(3)列车车轮非圆化磨耗检测技术相关研究.最后,对该领域今后的研究方向进行了展望:发展车辆轨道刚柔耦合动力学模型再现车轮多边形演化过程,多边形形成的机理;通过改变运营方式来抑制多边形发展速率;研究车轮智能踏面修形器来消除或抑制车轮多边形的发展.   相似文献   

7.
为了研究重载机车轮轨接触损伤问题,建立重载列车-轨道三维耦合动力学模型,研究车轮多边形与多种轨面摩擦条件下的机车轮轨系统动态相互作用行为.在此基础上,建立基于轮轨系统动力学响应的车轮踏面疲劳损伤预测模型,研究制动工况和轮轨接触表面变摩擦条件下车轮多边形磨耗对车轮表面磨损的影响.结果表明:严重的车轮多边形磨耗不仅加剧轮轨动态相互作用,也会增大轮轨接触界面磨耗损伤;在干燥接触条件下,车轮多边形会加剧车轮踏面疲劳损伤,车轮多边形导致机车第1位轮对和第4位轮对的损伤指数波动范围较正常车轮损伤指数的波动范围增大19.59%和39.43%;在低黏着接触条件下,车轮多边形会加剧车轮磨耗,车轮多边形导致轮轨蠕滑力波动增大5.85倍,使得机车第1位轮对和第4位轮对的磨耗数波动范围增大6.44倍和6.22倍.  相似文献   

8.
随着车辆的运行,车轮踏面会出现不同程度的磨耗,为研究磨耗状态下车轮与钢轨之间的静态匹配性能,利用轮轨接触几何关系和非赫兹滚动接触理论,计算不同磨耗程度的车轮对轮轨接触几何参数和接触力学特性的影响,并与CHN60钢轨的计算结果进行对比.分析结果表明:轮对横移小于4 mm时,车轮磨耗程度越大,车轮上接触点的横向分布宽度越大,60N钢轨的接触点横向分布宽度明显小于CHN60钢轨,对提高车辆运行稳定性有利;车轮磨耗程度越大,轮轨磨耗指数越大,60N钢轨的轮轨磨耗指数较小,有利于轮轨廓形的保持能力.车轮磨耗程度越大,位于表面滚动接触疲劳区的范围越大,相比CHN60钢轨,60N钢轨位于表面滚动接触疲劳区的情况较少,相同条件下,能够减少轮轨滚动接触疲劳伤损的发生.   相似文献   

9.
为研究60N钢轨350 km/h 18号高速道岔合理的轨距和轨底坡,利用60N钢轨高速道岔关键断面和实测LMA磨耗车轮,基于迹线法原理和Kalker三维非赫兹滚动接触理论,分析不同轨距和轨底坡参数下的轮轨接触几何和力学特性,并与CHN60钢轨高速道岔计算结果进行对比. 结果表明:在保证安全的前提下适当将轨距加宽可改善轮轨匹配关系,提升列车过岔平稳性,减小轮对横移量大于8 mm时的轮轨接触应力和表面滚动接触疲劳因子,延长尖轨使用寿命;轨底坡为1/30、1/40和1/50时,轮轨接触参数相差较小,匹配性能较优;轨底坡为1/10和1/20时,横向不平顺和轮轨滚动接触疲劳因子普遍较大,且1/10轨底坡对车轮磨耗的适应性较差;与CHN60钢轨高速道岔相比,60N钢轨高速道岔的等效锥度普遍更小,列车过岔平稳性更优;车轮磨耗易导致车轮在轮轨过渡区段空转,引起尖轨伤损.   相似文献   

10.
以CRH6A城际动车组为研究对象,基于实测磨耗后轮轨型面,利用多体动力学软件Universal Mechanism建立了车辆动力学模型,计算了通过曲线时的轮轨力与轮对位置参数;在非线性有限元软件ABAQUS中,基于任意拉格朗日欧拉方法建立了轮轨三维滚动接触模型,计算了轮轨接触应力特性和滑移特性;基于Archard磨损模型,提出一种车轮表面接触区域磨损速率快速计算方法,研究了新轮、磨耗初期车轮和磨耗到限车轮与新轨、磨耗后钢轨相互作用下,车轮通过曲线时接触区域磨损特性。研究结果表明:新轮和磨耗后钢轨、磨耗初期车轮和新轨、磨耗到限车轮与新轨相互作用下最大法向接触应力分别达到了2 017、1 803和1 668 MPa,比新轮和新轨、磨耗初期车轮和磨耗后钢轨、磨耗到限车轮和磨耗后钢轨3种作用下最大接触应力高出20%以上;新轮和磨耗后钢轨、磨耗初期车轮与新轨、磨耗初期车轮和磨耗后钢轨相互作用下,轮轨间出现两点接触、三点接触,甚至四点接触;在多点接触下,轮缘处接触点表现出应力集中且磨损速率较高的特点,最大磨损速率分别达到2.60×10-5、3.82×10-5、3.52×10-5 mm·s-1,远高于新轮和新轨、磨耗到限车轮和新轨、磨耗到限车轮和旧轨3种作用下的磨损速率;磨耗到限车轮和新轨与磨耗钢轨相互作用下的磨损速率均相对较小,说明在磨耗后期的车轮磨耗相对较小;轨角磨耗会严重加剧新轮的轮缘磨耗,且磨耗初期车轮具有较高的轮缘磨损速率,应将车轮镟修周期和钢轨打磨周期相协调,并通过涂油等方式降低磨耗初期的轮缘磨损。   相似文献   

11.
地铁先锋扣件地段钢轨波磨成因   总被引:1,自引:0,他引:1  
为了研究先锋扣件地段钢轨波磨的成因并给出应对措施,基于摩擦自激振动引起钢轨波磨的理论,建立了包括导向轮对、轨道系统的自激振动有限元模型,使用复特征值法研究了轮对-轨道系统的动态稳定性;通过参数敏感性分析寻找影响钢轨波磨的主导因素,提出抑制乃至消除钢轨波磨的措施. 研究结果表明:轮轨间饱和的蠕滑力引起的轮对-轨道系统频率为319 Hz的自激振动是导致内侧钢轨严重的波磨的主要原因,模型预测的波磨波长为51.4 mm,与实测数据非常接近;参数敏感性分析表明,先锋扣件中的橡胶支承块的弹性模量和阻尼系数越大,钢轨波磨发生的可能性越低;采用弹性模量和阻尼系数有利于抑制乃至消除钢轨波磨,将阻尼系数提高到0.000 1可显著抑制钢轨波磨.   相似文献   

12.
抑制轮轨摩擦自激振动的扣件结构多参数拟合研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究扣件结构参数对轮轨摩擦自激振动的影响,基于轮轨摩擦耦合自激振动的观点建立了小半径曲线轨道整体道床支承的轮轨系统有限元模型;通过现场测试和数值仿真验证了轮轨摩擦自激振动模型,进而基于该模型研究了扣件结构中各参数对轮轨摩擦自激振动的影响;综合考虑多因素之间的相互影响,采用最小二乘法得到了预测轮轨摩擦自激振动发生可能性的扣件结构多参数拟合方程. 研究结果表明:在整体道床支承的小半径曲线轨道上,轮轨间饱和蠕滑力引起的轮轨摩擦自激振动是诱导该区间钢轨波磨的关键因素,轮轨系统的摩擦自激振动主要发生在300 Hz和320 Hz;根据扣件结构的多参数拟合方程,在适当范围内,扣件的垂向阻尼为1000 N?s/m,扣件间距为1.0 m组合时,可以降低小半径曲线轨道上轮轨系统摩擦自激振动发生的可能性,从而降低钢轨波磨发生的可能性.   相似文献   

13.
缩尺轮轨模型中钢轨波磨的相似性   总被引:2,自引:0,他引:2  
为了研究地铁小半径曲线线路的钢轨波磨现象,基于轮轨间饱和蠕滑力引起摩擦自激振动导致钢轨波磨的理论,对全尺寸和缩尺轮轨模型的相似性进行了研究. 分别建立1∶1和1∶5车辆-轨道系统的动力学模型,确定每个车辆模型在通过小半径曲线线路时前转向架导向轮对与轨道间的蠕滑力饱和情况;根据动力学仿真所得轮轨接触参数,建立轮对-轨道-轨枕有限元模型;采用复特征值分析研究各个轮轨系统的稳定性. 研究结果表明:全尺寸和缩尺车辆模型分别通过小半径曲线线路时,导向轮对内外车轮上的蠕滑力均接近饱和;轮对两端垂向悬挂力的偏差小于3%,轮轨接触角的偏差小于5%;相似不稳定振动模态对应的频率偏差均小于3%;缩尺轮轨模型在动力学表现及稳定性方面与全尺寸模型具有良好的相似性,故可用缩尺模型对钢轨波磨的形成机理进行理论与试验研究.   相似文献   

14.
基于摩擦自激理论的单侧钢轨波磨机理分析   总被引:1,自引:1,他引:0       下载免费PDF全文
肖宏  陈鑫  赵越 《西南交通大学学报》2022,57(1):83-89, 119
为了分析重载铁路曲线地段钢轨波磨的产生原因,基于摩擦自激振动理论建立小半径曲线轮轨三维接触精细化模型,讨论了不同扣件刚度、摩擦系数、超高对轮轨系统不稳定摩擦自激振动的影响,揭示了单侧钢轨波磨产生的内在原因,并通过轮轨瞬态动力学方法,分析了单侧钢轨波磨的传递及演化过程. 结果表明:超高和实际运行速度的不匹配是曲线内股钢轨首先产生波磨的主要原因;内股钢轨波磨产生后会导致轮轨系统不稳定,并将振动传递至外股钢轨,从而诱发小半径曲线地段两侧钢轨均产生波磨;适当地提高扣件垂横向刚度、控制轮轨摩擦系数在0.4以下,能够有效地降低轮轨系统发生不稳定振动的趋势,从而抑制波磨发展.    相似文献   

15.
为设计可提升列车小半径曲线通过性能的钢轨非对称打磨目标廓形,对中国现有CN60钢轨廓形进行了几何推导;以钢轨廓形几何参数作为设计变量,以车辆系统多体动力学指标作为综合目标函数,考虑钢轨打磨约束条件,提出了一种针对小半径曲线钢轨非对称打磨廓形的多目标数值优化模型;基于差分进化算法编写了相应的数值计算程序,并选择合理的计算参数求解了优化模型;根据实际线路参数分析了优化后钢轨打磨廓形的轮轨接触几何特性,并验证了列车的小半径曲线动力学性能。研究结果表明:提出的优化方法具有较快的计算速度,优化模型仅迭代了97次即可获得理想的钢轨打磨廓形;非对称打磨使内外钢轨具有差异性的打磨位置与打磨深度,将轮轨对中位置向轨道内侧移动了约10 mm,且不会改变轮缘处的轮轨匹配特性,有效增大了轮对横移10 mm范围内的轮对滚动圆半径差与轮轨接触角差,降低了列车在通过小半径曲线时的轮对横移、轮轨横向力、脱轨系数和轮重减载率,提高了转向架的横向稳定性和轮轨磨耗性能;虽然该打磨方式获得的钢轨廓形增大了轮轨接触应力,但并不会引起轮轨塑性变形。由此可见,该设计方法为提高列车的中小半径曲线通过能力提供了一种可行途径。   相似文献   

16.
总结了现有传统钢轮钢轨式轮轨系统的工程问题、研究现状和工程处理方法;分析了钢轨波磨和车轮不圆的形成和发展机理,对困扰高铁的踏面凹磨问题提出了创新性治理设想;拟通过轮轨系统的廓形设计-磨损评价-磨损治理的系统化革新思路,获得既安全又经济的线路条件个性最优化方案;总结和展望了目前轮轨系统的打磨和镟轮,讨论了轮轨系统的检测方...  相似文献   

17.
高速列车轮轨噪声分析与控制   总被引:1,自引:0,他引:1  
对高速列车轮轨噪声产生机理进行了理论分析,论证了钢轨振动产生的辐射噪声是轮轨噪声的主要成分;通过对模拟运行的高速列车轮轨噪声源的测试与分析,表明列车运行速度是影响轮轨噪声大小的主要因素之一,由此提出高速列车轮轨噪声控制的有效方法。  相似文献   

18.
对世界各国地铁钢轨波磨的基本特征进行了系统梳理,总结了其普遍性与时间集中性,及其与曲线、轨道结构、车辆及其他因素相关性等典型特征,并对其分类方法、形成机理和治理措施进行了综合评述。研究结果表明:钢轨波磨普遍存在于地铁与有轨电车线路中,在新线开通初期与线路改造初期最为严重;一般而言,相对于直线和大半径曲线,小半径曲线的钢轨波磨最为普遍,低轨侧波磨波长短,幅值大,但也有例外,部分大半径曲线及直线上也有分布;波磨的波长特征和发展速度与轨道结构密切相关,轨道结构及部件不匹配时,易出现快速发展的波磨;车轮踏面廓形、轮对定位、悬挂刚度与簧下质量等车辆结构参数会对波磨萌生、发展与表现特征产生影响;波磨的产生还可能与钢轨材质、牵引和制动、运行环境、湿度及摩擦因数有关。地铁钢轨波磨的形成机理主要基于轮轨系统共振、轮轨黏滑(摩擦自激)振动、钢轨振动波反射等理论,对波磨形成过程的纵向动力学影响与系统非线性因素考虑不完善,关于黏滑自激振动与轮轨负摩擦特性对波磨影响的认识还不统一,难以解释直线以及曲线高低轨波磨特征的差异等,对波磨的形成和发展缺乏理论上的主动预测和试验验证;各国主要以钢轨打磨来控制波磨发展,通过调节轨道结构、运行环境,采用钢轨吸振器和轮轨摩擦调节装置,以及优化车辆设计等主动措施来控制波磨的研究仍需进一步开展;未来应针对车辆-轨道系统的动态特性以及实际运行工况下的轮轨微观接触行为和黏滑自激振动特性,开展车辆-轨道系统的轮轨动态磨耗演化仿真,掌握地铁钢轨波磨形成机理和关键因素影响规律,提出控制地铁钢轨波磨的主动措施和轮轨匹配优化设计原则。   相似文献   

19.
根据中国高速铁路的现状,在轮对内侧距选用1353、轨底坡选用1:40、钢轨选用中国高速钢轨cHN60的前提下,研究了CRH2上使用的LMa、CRH3上使用的S1002G和日本新干线圆弧车轮JP-ARC这3种踏面对CHN60轮轨的影响.研究结果表明,LMa与CHN60的轮轨接触点分布比较均匀,有利于车轮型面的保持;其次是...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号