首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
为了研究来流紊流积分尺度对矩形断面高层建筑迎风面脉动风压及其分布特性的影响,选取2∶1和1∶2矩形为对象,通过风洞测压试验,对不同积分尺度紊流场中矩形迎风面的平均风压系数及脉动风压均方根系数、脉动风压相关函数和相干函数、脉动风压功率谱进行了对比分析. 研究结果表明:对于矩形同一高度处,脉动风压功率谱在低频区始终受准定常效应控制,而在高频区脉动风压功率谱随积分尺度的增大而增大;风压的相关性高于风的相关性,风压的相关函数与相干函数也随积分尺度的增大而增大,但相关宽度随积分尺度的增大而减小;脉动风压均方根系数随积分尺度的增大而增大;对于同一流场中矩形不同测点处,离驻点越远,风压相关函数和相干函数越小,脉动风压均方根系数越大;来流紊流积分尺度对平均风压系数的影响较小.   相似文献   

2.
为揭示超高层建筑气动噪声产生的机理及空间分布特征,利用大涡模拟,在大气边界层内求解超高层建筑绕流场,结合FW-H (Ffowcs Williams-Hawkings)方程的声类比法进行了超高层建筑周围声压场的数值模拟. 研究发现:超高层建筑每个面均是偶极子声源,气动噪声是由建筑表面的偶极子声源产生,且受建筑表面风压主导,顺流向和横风向的脉动压力分别主导相应方向的声场辐射强度; 气动噪声沿高度方向先增大后减小,在0.7倍建筑高度附近噪声达到最大值; 在相同高度和离建筑表面相同距离的不同空间点,当空间点面对建筑迎风面时总声压级最大、背风面次之,侧风面最小; 随着空间点与建筑距离的增大,空间点总声压级快速衰减,且横风向较顺风向衰减更快. 研究认为:大涡模拟和声类比相结合的方法能合理预测超高层建筑的气动噪声;优化气动外形,降低建筑表面风压是降噪的最有效途径.   相似文献   

3.
为探讨雷暴冲击风作用下山地不同坡度角对于高层建筑表面风荷载的影响,为高层建筑结构设计提供参考依据,采用冲击射流装置进行风洞试验,对同一高层建筑在平地及不同坡度角的山地等多种地形下表面风压的分布特性进行试验研究,并借助计算流体力学软件FLUENT对试验工况进行了模拟和补充,分析了雷暴冲击风作用下平地地形、坡地地形下高层建筑表面风压分布特性以及起坡角度对建筑风荷载特性的影响规律.研究结果表明:平地时,不同径向位置处高层建筑各层阻力系数分布沿高度具有相同的变化规律,层阻力系数随着径向距离的增大而减小,径向距离由射流喷口直径的1.0倍变化到3.0倍的过程中,层平均阻力系数最大值由1.3减小到0.3;坡地时,高层建筑迎风面的风压值与山地坡度角的增加呈负相关,极值风压所在高度同样随着起坡角度的增加而减小;从平地到90°坡地,极值风压系数减小幅度达到0.7以上,极值风压出现的高度由建筑物高度的1/4处降低到建筑物底部附近.  相似文献   

4.
用高频测力天平技术,对不同锥度比的方形截面高层建筑进行了风洞试验,分析了锥度比、湍流度和风向角对方形截面高层建筑基底弯(扭)矩系数、基底弯(扭)矩谱密度与基底弯(扭)矩间相关性的影响.试验结果表明:锥度化措施能减小方形截面高层建筑基底弯(扭)矩系数幅值25%以上,但不能改变基底气动力随风向角的变化规律;锥度化措施能减小所有折减频率范围内顺风向与扭转向基底弯矩谱,但只能减小低频区域横风向基底弯矩谱和谱峰高度,却增大旋涡脱落频率和高频区横风向基底弯矩谱;随来流湍流度增大,锥度化措施对风荷载的抑制效果减弱;折减频率在0.10到0.15时,锥度化措施能增大横风向基底弯矩与基底扭矩间的相关性.   相似文献   

5.
为研究高雷诺数为22 000下方柱周围流场形态及气动力特性,基于开源计算流体动力学(computational fluid dynamic,CFD)软件OpenFoam平台,采用基于动态亚格子模型的大涡模拟(large eddy simulation,LES)方法,对均匀来流作用下的方柱绕流进行了三维数值模拟.首先,通过对基于时间积分的平均积分分量的比较,验证了本数值计算的准确性;其次,深入分析了方柱周围及其尾流区的流场结构,给出了流场结构的平均和湍流特征,并在此基础上,研究了其气动力特性;最后,分析了两种长径比下表面压力的展向空间相关性.研究结果表明:雷诺数为22 000下方柱尾流区回转长度为1.37倍方柱宽度,Strouhal数为0.121,脉动升力系数为1.40;展向长度取8倍方柱宽度可更准确地获得周围湍流特性.   相似文献   

6.
不同长宽比矩形高层建筑的分离再附流动特性   总被引:1,自引:0,他引:1  
为研究边界层紊流特性、断面长宽比和空间位置等因素与矩形高层建筑分离再附流动特性之间的关联,通过不同长宽比矩形建筑模型的同步测压试验,获取不同工况下的表面风压实测数据;分析了影响矩形建筑三维分离再附流动和分离区长度演化规律的多种因素,探讨了大尺度紊流下矩形高层建筑的非定常气动力与分离再附流动特性的内在关联;定量给出了平均分离区长度在竖向的分布规律. 研究结果表明:紊流风场的积分尺度与建筑特征尺寸的比值关系会影响分离再附流动和气动力特性的试验精准度,最大偏差可达约24%;边界层紊流的干扰导致分离剪切层曲率增大,加强了对分离区的卷夹作用,稳定再附将发生在长宽比为2时;平均分离区长度在竖向方向逐渐增大,并依据试验结果给出了高层建筑侧面风压取值的修正建议.   相似文献   

7.
为了解大跨翘曲屋盖结构的风压分布特征,对某大跨翘曲屋盖进行了风洞试验和计算流体动力学数值模拟.首先,根据风洞试验结果分析了屋盖风压分布情况及门窗开启状态对风压分布的影响;然后,基于CFX软件平台,采用RNG k-ε湍流模型模拟了该屋盖结构的平均风压分布,并将模拟结果与风洞试验数据进行了比较.研究结果表明:门窗开启对外风压影响较小,对内压有一定影响,开一边门窗时,屋盖会受到向上的升力,两边同时开启时,内压对屋盖有向下的吸力作用;采用RNG k-ε湍流模型模拟大跨翘曲屋盖结构的平均风压分布具有较好的计算精度,可较准确地反映实际风压;屋面风压分布以吸力为主,风荷载最不利位置在翘曲边缘和屋面顶部区域;来流方向为翘曲向时,风流在翘曲边缘有较大的分离,在翘曲面有较强的漩涡产生,风流绕过建筑后,在来流方向建筑两侧会伴随着分离和漩涡产生,且在背风面会形成两个大的对称尾涡,而来流方向为凹曲向时,侧面和背风面的分离和漩涡并不明显.   相似文献   

8.
为了探究管道列车的尺度对波系、尾涡以及气动载荷的影响,基于CFD软件建立三种模型尺度(1∶1,1∶5和1∶10),同时考虑两种悬浮间隙关系(车轨相对间隙不变和绝对悬浮高度不变)的模型;采用改进的延迟分离涡模拟(IDDES)湍流模型和重叠网格技术模拟了列车在管道动态运动,并用风洞试验数据验证了数值方法和网格策略的合理性.研究结果表明:列车尺度(雷诺数)增大,车前活塞区域变长,尾流扰动区范围缩短;雷诺数对近尾流区的涡对演化影响较小,但在远尾流区,随着列车尺度减小,涡对脉动变强,涡对强度的差异导致了车后正激波形态的差异;列车表面最大正压值和最大负压值均随着列车尺度增大而增大,悬浮间隙对最大正压值影响较小,但与最大负压值成正相关关系;尺度效应从压差阻力和摩擦阻力两方面共同影响气动阻力,整车摩擦阻力和头、中间车的压差阻力与雷诺数正相关,但是尾车压差阻力受附着激波的强度影响恰恰相反;列车尺度和悬浮高度均对升力影响较大.相对于全尺寸模型,1∶10模型(悬浮高度20 mm)的最大正压值减小3.82%,最大负压值增大3.94%,整车总阻力增大8.64%,头车升力减小101.56%,尾车升力增大15.88...  相似文献   

9.
刘多特  李永乐  汪斌 《西南交通大学学报》2016,29(6):1105-1112,1197
为考察偏斜风效应下地面结构周边地表积雪形态及形成机理,基于欧拉框架多相流理论,采用计算流体动力学(CFD)方法,模拟了不同来流风向下立方体建筑的特征绕流场,对比了地表侵蚀积雪预测指标的差异.研究结果表明:来流风向的改变影响模型周边近地流分离及附着的形成,决定了地表剪切状态,顺风体轴方向,风向角的增大(045)使侵蚀极值位置总体后移,模型背风侧极值位置随风向的改变较迎风侧敏感;空间吹雪浓度分布受模型特征扰流及风向重分配效应影响显著,决定了当地沉积强度,横风体轴方向,靠近来流侧近地吹雪浓度始终大于出流侧,两侧浓度差随风向角的增大(045)而增大.单位时间下地物水平正交方向的侵蚀沉积量随风向的改变呈现此消彼长的规律,风向对局部地表积雪形态的调整机制近似动态平衡.   相似文献   

10.
为探讨桥塔上风传感器安装位置对测量结果的影响,以计算流体力学大型商用软件Fluent为平台,采用有限体积法对计算域进行离散,基于k-湍流模型研究了桥塔附近的风场特性.分析了不同来流风速、不同来流风向下桥塔附近风观测点的风速、风向变化规律,给出了相应的风速修正系数和风向角修正值.研究结果表明:桥塔对测量结果的影响较大,桥塔上风传感器的安装位置应经过优化确定.风传感器位于迎风侧时,风速比值在0.45~1.30之间波动;位于背风侧时,风速比值在0.05~1.25之间波动.风传感器较优的安装位置为离塔1.0倍特征尺寸以上,且与来流方向的夹角在(45.0~56.5)范围内.   相似文献   

11.
利用Creo软件建立了某型动车组头中尾3车编组和不同高度的路堤模型,通过Fluent软件模拟列车在车速分别为300和350 km·h-1,横风风速分别为17.10、20.70、24.40和28.40 m·s-1的环境下运行,将获取的高速列车气动力载荷施加到Simpack建立的动力学模型中,计算其动力学性能参数;深入分析了横风工况下高速列车在不同高度复线路堤背风侧运行时车体的压力分布、气流场结构、气动力与风致安全性,并重点探究了头车在不同运行速度和横风风速下的运行安全性。分析结果表明:在相同车速和横风环境下,随着路堤高度的增加,列车受到的侧向力整体呈增大趋势,尾车在横风作用下受到反向侧向力,头车所受侧向力最大,且升力持续增大,中间车所受升力相对较大,尾车所受阻力最大;横风环境下列车压力峰值点位于头车鼻尖处且向迎风侧偏移,各路堤高度工况下气流场结构基本相同,头车背风侧和底部转向架处有明显的涡流,但尾车处的涡流却在迎风侧,这可能是导致尾车反向侧向力的主因;脱轨系数、轮轴横向力、轮轨垂向力和轮重减载率均随路堤高度和横风风速的增大而增大,轮轨垂向力始终在安全限值内,当横风风速分别为24.40和28.40 m·s-1时,列车运行速度应分别低于350和300 km·h-1,以保证列车行车安全。   相似文献   

12.
格库铁路HDPE板栅栏有效防护距离   总被引:1,自引:0,他引:1       下载免费PDF全文
以格库铁路现场风沙试验段为研究对象, 运用数值模拟方法研究了HDPE板栅栏周围的风沙流场, 给出了不同初始风速下HDPE板栅栏有效防护距离与其孔隙率和高度的关系, 研究结果表明: 气流经过HDPE板栅栏时, 气流速度在栅栏前降低较快, 在栅栏后恢复较快, 经过一段距离后逐渐恢复到初始风速, 气流速度整体呈V形分布, 气流速度增减幅度随HDPE板栅栏孔隙率的增大逐渐减小; 在同一孔隙率下, 初始风速分别为6、24 m·s-1时, HDPE板栅栏背风侧回流区相差4.5倍HDPE板栅栏的高度; 孔隙率为60%时, 最小气流速度为8.9 m·s-1, HDPE板栅栏背风侧回流消失; 随着HDPE板孔隙率的增大, 最小气流速度逐渐增大; HDPE板栅栏的孔隙率存在不产生栅栏背风侧回流区的界限孔隙率, 为40%~60%;孔隙率小于50%时, 随着HDPE板孔隙率的增大, 有效防护距离逐渐增大, 孔隙率大于50%时, 随着HDPE板孔隙率的增大, 有效防护距离逐渐减小, 当孔隙率趋于100%时, 其有效防护距离趋于0, 因此, HDPE板栅栏的最优孔隙率为50%;随着高度的增加, HDPE板栅栏背风侧恢复到初始风速的距离增加, 同一风速下, 孔隙率为50%的HDPE板栅栏的有效防护距离是孔隙率为25%的HDPE板栅栏的1.35倍; 在现场布设HDPE板栅栏时建议使用40%~50%孔隙率的栅栏, 在经济条件允许的情况下可考虑适当增加栅栏高度, 以保证路基免受风沙侵蚀。   相似文献   

13.
为研究屋盖积雪对低矮平屋面风场特性的干扰影响,基于风吹雪风洞试验,通过3D打印获得平屋面的3D积雪形态,并以无积雪模型作为对照,系统地开展了PIV (particle image velocimetry)风洞试验,并结合LES(large eddy simulation)方法,研究了6组平屋面建筑有无积雪时的流场分布特性.试验研究表明:当无积雪时,来流在屋面前缘处分离后能形成典型的分离泡流动,分离泡内速度场存在明显逆流现象;当有积雪时,屋面上方的逆流减弱甚至消失,积雪显著地加快了流经屋面附近流场的速度,其最大速度增量约为0.6,同时,流线分布更贴合模型壁面,速度梯度增大,也相对增大了涡量值;积雪会使得屋面上方整体的时均湍动能和切应力均减小,但对屋面迎风区域的平均和脉动风压均有增大作用,其增大比值约为15%和20%.通过该研究可进一步对低矮建筑的风雪荷载作用机理展开分析,为屋盖结构的抗风雪设计提供参考.  相似文献   

14.
为探究高层办公建筑基座式与毗邻式裙房布局对室外场地行人高度(1.5 m)处风环境的影响,选择地块内单幢高层建筑为研究对象,从裙房的位置、高度、迎风面宽度和进深状况对基座式与毗邻式裙房布局进行讨论,利用穷举法得到多种典型布局,并通过CFD (computational fluid dynamics)流体力学模拟软件Phoenics对地块内的建筑室外风环境进行模拟,对比得到基座式与毗邻式裙房的最优布局模式. 研究结果表明:在杭州高层建筑密集地块进行高层办公建筑裙房设计时,毗邻式裙房布局优于基座式,当裙房高度设计范围在15.0~20.0 m,裙房迎风面宽度设计范围为70.0 m左右,裙房迎风面进深长度在50.0~60.0 m时,风环境状况最好.   相似文献   

15.
In this paper, a numerical simulation of flow-induced noise by the low Mach number turbulent flow with a sinusoidal wavy wall was presented based on the unsteady incompressible Navier-Stokes equations and Lighthill’s acoustic analogy. Large eddy simulation (LES) was used to investigate the space-time flow field and the Smagorinsky sub-grid scale (SGS) model was introduced for turbulence model. Using Lighthill’s acoustics analogy, the flow field simulated by LES was taken as near-field sound sources and radiated sound from turbulent flow was computed by the Curle’s integral formulation under the low Mach number approximation. Both spanwise wavy wall and streamwise wavy wall with various wall wave amplitudes were discussed to investigate their effects on reducing the drag and flow noise. The relationship between flow noise and drag on the wavy wall is also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号