首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
基于横向控制器和纵向控制器模型,包括校正的预瞄驾驶员模型、加速度控制模型、节气门控制模型和制动器控制模型,建立Matlab/Simulink 和CarSim 车辆联合仿真平台,并对其可行性进行分析与验证.利用平台分别仿真协同自适应巡航控制(Cooperative Adaptive Cruise Control, CACC)车队车辆紧急刹车,通信延时,起步加、减速工况和车队前方插入换道车辆4 种情况下CACC车辆的行驶状况.仿真发现:紧急刹车时车队能够实现较好的紧急避撞;在通信延时的情况下,车队仍能保证行车安全;车队起步、减速工况运行较平稳,但加速度并不平稳,不利于车队后方车辆的乘坐舒适性;车队对前方插入不同速度的车辆能够及时响应并最终恢复安全行车间距.  相似文献   

2.
基于横向控制器和纵向控制器模型,包括校正的预瞄驾驶员模型、加速度控制模型、节气门控制模型和制动器控制模型,建立Matlab/Simulink 和CarSim 车辆联合仿真平台,并对其可行性进行分析与验证.利用平台分别仿真协同自适应巡航控制(Cooperative Adaptive Cruise Control, CACC)车队车辆紧急刹车,通信延时,起步加、减速工况和车队前方插入换道车辆4 种情况下CACC车辆的行驶状况.仿真发现:紧急刹车时车队能够实现较好的紧急避撞;在通信延时的情况下,车队仍能保证行车安全;车队起步、减速工况运行较平稳,但加速度并不平稳,不利于车队后方车辆的乘坐舒适性;车队对前方插入不同速度的车辆能够及时响应并最终恢复安全行车间距.  相似文献   

3.
为提升电动汽车的纵向跟车性能,进行电动汽车纵向动力学建模和分层控制策略研究。建立包括电动机、变速器、主减速器、车轮及整车纵向运动模型的电动汽车纵向动力学模型。设计纵向跟车系统决策层与实施层分层控制架构,在决策层建立纵向跟车运动学控制模型,综合考虑实际车距与期望车距误差、自车与前车相对车速、自车加速度和加速度控制量限值的二次型性能指标,基于线性二次最优控制理论优化得到期望的跟车加速度;基于驱动电机和制动器切换逻辑,实施层控制器设计比例积分微分加速度校正器跟踪期望加速度。Matlab/Simulink多工况仿真结果表明:所设计的跟车控制器能够有效控制自车跟踪前车,具备良好的自适应性。  相似文献   

4.
为研究车联网环境下异质交通流的演变规律,首先,引入相对熵定量描述异质流的有序性,并分析有序性与智能网联车(connected and autonomous vehicle,CAV)市场渗透率、协同自适应巡航控制(cooperative adaptive cruise control,CACC)队列数之间的内在联系,推导得出智能网联车渗透率的增加及队列数的减少可以提升异质流的有序性;其次,提出了保守型集聚(conservative aggregation,CSA)、激进型集聚(radical aggregation,RDA)两种改进的智能网联车集聚换道策略,并通过元胞自动机仿真实验,从通行能力、相对熵和平均队列长度等方面比较了无集聚(no aggregation,NOA)、常规集聚(conventional aggregation,CVA)、CSA、RDA 4种换道策略的优劣;最后,在CSA换道策略中分析了不同最小队列规模限制对于通行能力的影响.研究结果表明:在双车道环境下,采取集聚换道策略能使智能网联车形成CACC队列,使异质流趋于“有序”,在20~95辆/km密度范围内提升通行能力;...  相似文献   

5.
为研究网联自动驾驶车(connected autonomous vehicle, CAV)和人工驾驶车(human-pilot vehicle, HPV)所组成的异质交通流特性及公交车驾驶行为对环境的影响,首先,分析异质交通流中的4种跟驰模式:人工驾驶小汽车跟驰、人工驾驶公交车跟驰、自适应巡航控制(adaptive cruise control, ACC)跟驰和协同自适应巡航控制(cooperative adaptive cruise control, CACC)跟驰;接着,基于各跟驰模型的特点,构建车辆跟驰和换道的元胞自动机模型,综合考虑CAV车队特性、驾驶员与CAV各自反应时间特性以及HPV加塞特性,并利用跟驰模式判断参数融合不同跟驰模式特性,实现统一的模型表达;最后,仿真分析不同CAV渗透率下CAV排队强度及公交车换道行为对交通流的影响.结果表明:在一定的CAV渗透率下,促使CAV形成队列比单纯提高CAV渗透率更能有效提升道路通行效率;适量的公交换道有助于充分利用道路通行能力,过多的公交换道则会妨碍正常交通,公交换道对交通流造成的通行效率衰减随CAV渗透率的增大而减小;同步流状态...  相似文献   

6.
研究协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)车头时距对不同CACC比例下混合交通流稳定性的影响关系,进而为CACC车头时距设计提供参考. 应用优化速度模型(Optimal Velocity Model,OVM)作为手动车辆的跟驰模型,PATH真车实验标定的模型作为CACC车辆的跟驰模型. 基于传递函数理论,推导混合交通流稳定性判别条件,计算关于CACC比例与平衡态速度的混合交通流稳定域. 分析混合交通流在任意速度下稳定所需满足的临界CACC比例与CACC车头时距的解析关系,提出随CACC比例增加的可变 CACC车头时距设计策略,并通过数值仿真实验验证所提可变CACC车头时距策略的正确性. 研究结果表明:在所提可变CACC车头时距策略下,CACC车头时距随CACC比例增加而逐渐降低,避免取值较大影响混合交通流通行能力的提升;当CACC比例大于35%时,混合交通流在任意速度下稳定.研究结果可为大规模CACC真车实验的实施提供理论设计参考.  相似文献   

7.
为确保通信延时条件下协同式自适应巡航控制(CACC)系统的弦稳定性,利用模型预测控制(MPC)和长短期记忆(LSTM)预测方法,研究CACC系统中车辆协同控制下的通信延时补偿方法;基于车辆队列四元素架构理论,构建了包括车辆动力学模型、间距策略、网络拓扑和MPC纵向控制器的系统模型,并综合考虑2范数和无穷范数弦稳定性条件,提出了CACC车辆队列混合范数弦稳定性量化指标,最终形成协同式车辆队列建模与评价体系;设计了一种利用前车加速度轨迹(PVAT)作为开环优化参考轨迹的MPC方法,即MPC-PVAT,通过综合考虑队列的跟驰、安全、通行效率和燃油消耗等性能指标,使目标函数趋于最小代价,从而得到当前时刻的最优控制量,并利用庞特里亚金最大值原理对所设计的优化问题进行快速求解;在MPC-PVAT基础上,提出一种基于长短期记忆(LSTM)网络的通信延时补偿方法,即MPC-LSTM,将跟驰车辆的传感器信息输入LSTM网络来预测其前车的运动状态,从而缓解短暂通信延时对车辆队列稳定性的影响。仿真测试结果表明:MPC-LSTM可容忍的通信延时上界大于1.5 s,比MPC-PVAT提升了0.8 s,比线性控制器提升了1.1 s;在基于实车数据测试中,当通信延时增加到1.2 s时,MPC-LSTM的弦稳定性指标相比MPC-PVAT提升了20.33%,与线性控制器相比稳定性提升了39.35%。可见,在通信延时较大的情况下,MPC-LSTM对通信延时具有很好的容忍性,从而有效地保证了CACC车辆队列的弦稳定性。   相似文献   

8.
研究协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)车头时距对不同CACC比例下混合交通流稳定性的影响关系,进而为CACC车头时距设计提供参考. 应用优化速度模型(Optimal Velocity Model,OVM)作为手动车辆的跟驰模型,PATH真车实验标定的模型作为CACC车辆的跟驰模型. 基于传递函数理论,推导混合交通流稳定性判别条件,计算关于CACC比例与平衡态速度的混合交通流稳定域. 分析混合交通流在任意速度下稳定所需满足的临界CACC比例与CACC车头时距的解析关系,提出随CACC比例增加的可变 CACC车头时距设计策略,并通过数值仿真实验验证所提可变CACC车头时距策略的正确性. 研究结果表明:在所提可变CACC车头时距策略下,CACC车头时距随CACC比例增加而逐渐降低,避免取值较大影响混合交通流通行能力的提升;当CACC比例大于35%时,混合交通流在任意速度下稳定.研究结果可为大规模CACC真车实验的实施提供理论设计参考.  相似文献   

9.
建立了双向双车道环境下单车超越车队模型, 分析了影响双向双车道超车危险区域范围的主要因素; 设计了分步式单车超越车队算法, 研究了安全间隙前后车速度、超车车辆入队速度与车队安全间隙范围四者之间的关系, 提出了车辆入队所需最小安全间隙的速度匹配方案; 建立了单车超越车队算法的目标函数, 设定最大允许超车时间内超车车辆与车队行驶距离最大, 超车车辆超越车队车辆数最多, 前、后车形成安全间隙过程中加速度、减速度最小; 提出了基于改进粒子群的分级约束多目标优化方法, 为单车超越车队算法中的三级车速引导提供了优化的速度引导方案。研究结果表明: 双向双车道环境下超车危险区域范围与车队车辆数及对向车辆行驶速度成正相关关系; 改进的粒子群优化算法相比传统算法具有更强的鲁棒性和更快的收敛速度, 平均收敛时间缩短39.2%;在分步式单车超越车队过程中, 车队车辆平均速度提升9.04%, 即在车队间隙生成过程中, 虽然部分车辆速度减小, 但车队整体平均速度得到提升; 超车车辆平均速度提升16.8%, 即在超车过程中, 不仅超车车辆的安全性得到保证, 其运行效率也得到提升。   相似文献   

10.
为实现实际动态交通环境下智能汽车的变道控制, 提出了基于轨迹预瞄的智能汽车变道动态轨迹规划与跟踪控制策略; 针对实际交通环境下目标车道车速和加速度的动态变化, 提出了智能汽车变道动态轨迹规划算法, 获得了能够避免智能汽车发生碰撞的变道轨迹的动态最大纵向长度; 设计了兼顾变道效率和乘员舒适性的优化目标函数, 优化获得了在变道轨迹最大纵向长度范围内的实时动态最优变道轨迹; 利用轨迹预瞄前馈和状态反馈相结合的类人转向控制方式, 实现了智能汽车变道动态轨迹跟踪和乘员舒适性的最优控制, 并利用硬件在环试验台验证了所提控制策略的正确性。研究结果表明: 定速工况下实际与参考轨迹的侧向位移误差、航向角误差和最大侧向加速度分别为1.4%、4.8%和0.59 m·s-2; 定加速度工况下实际与参考轨迹的侧向位移误差、航向角误差和最大侧向加速度分别为1.1%、4.6%和0.48 m·s-2; 变加速度激烈工况下实际与参考轨迹的侧向位移误差和最大侧向加速度分别为1.7%和0.80 m·s-2, 航向角超调后能迅速重新跟踪动态轨迹航向角; 所提控制策略可以很好地跟踪控制实际交通环境下目标车道汽车在定车速、定加速度和变加速度工况下的智能汽车动态变道轨迹, 从而能实现智能汽车最优变道, 可确保变道过程中不与目标车道汽车发生碰撞, 并兼顾变道效率和乘员舒适性。   相似文献   

11.
为提高汽车空气悬架的行驶平顺性,针对空气弹簧的非线性特性,建立空气弹簧关于气囊压力、有效面积、垂向变形等因素有关的弹力模型.利用所建立的空气弹簧弹力模型建立单轮1/4车辆动力学模型.以车身加速度最小为控制目标,设计并建立非线性空气悬架的联合型模糊PID控制器.运用MATLAB/Simulink仿真软件,以气囊压力变化所产生的力作为控制输出量,进行计算机动态仿真.仿真结果表明:与被动空气悬架相比,针对非线性空气悬架所设计的联合型模糊PID控制器对车辆平顺性与道路友好性有显著的改善.  相似文献   

12.
为提高车辆的乘坐舒适性,建立了一种新型的四自由度的变刚度和阻尼半主动悬架模型。根据模糊控制理论,设计了两种适用于此模型的模糊控制器:常规模糊控制器和变论域模糊控制器。在MATLAB/SIMULINK仿真软件中建模,以积分白噪声随机路面输入作为激励,对被动悬架模型、常规模糊控制和变论域模糊控制的半主动悬架模型进行了仿真。仿真结果表明,与被动悬架相比,变刚度和阻尼半主动悬架能够有效降低车身垂直加速度和车身俯仰角加速度,有效地提高了车辆的乘坐舒适性。同时还表明,悬架的变论域模糊控制的减振效果优于常规模糊控制的。  相似文献   

13.
建立了基于空气悬架的1/2车辆加速/制动系统模型,通过轴距预瞄在后轮处提前预测路面不平度;设计了基于轴距预瞄控制算法的加速/制动最优控制器;进行了白噪声仿真分析。仿真结果表明:与被动空气悬架加速/制动系统相比,基于轴距预瞄控制的主动空气悬架加速/制动系统能有效降低车辆振动。与最优控制空气悬架加速/制动系统相比,质心加速度和后轮对应处的车身加速度、悬架动行程、轮胎动载均有显著减小,较好的改善了车辆在加速/制动时的平顺性和操纵稳定性。  相似文献   

14.
为了兼顾车辆自适应巡航控制(ACC)系统的跟踪控制效果和实时性, 提出了基于显式模型预测控制(EMPC)理论的车辆多目标自适应巡航控制方法; 基于车辆间运动学关系建立自适应巡航控制运动学模型, 根据预测控制理论推导预测时域内的跟踪误差预测模型, 并确定车辆安全性、跟踪性、经济性和舒适性等多性能目标函数和约束条件; 运用显式模型预测控制中的多参数规划理论, 将基于反复在线优化计算的闭环模型预测控制系统转化为与之等价的显式多面体分段仿射(PPWA)系统, 通过离线计算获得期望加速度与距离误差、速度误差、自车加速度和前车加速度等状态变量之间的最优控制律, 并设计在线查表的搜索流程, 通过定位当前状态所处分区, 并应用该分区的显式控制律实现自适应巡航控制; 进行了纵向跟踪工况仿真验证, 并与传统MPC-ACC控制方法进行对比。对比结果表明: 在前车正弦加减速工况下, EMPC-ACC控制器单步运算速度比MPC-ACC控制器平均提升了53.51%, EMPC-ACC控制下的平均距离跟踪误差为0.220 3 m, 平均速度误差为0.340 1 m·s-1; 在前车阶跃加减速工况下, EMPC-ACC控制器单步运算速度比MPC-ACC控制器平均提升了72.96%, EMPC-ACC控制下的平均距离跟踪误差为0.331 9 m, 平均速度误差为0.399 1 m·s-1。可见, 提出的EMPC-ACC控制算法在保证纵向跟踪性能的前提下, 有效地提高了自适应巡航控制的实时性。   相似文献   

15.
为了对地铁车辆的运行性能实现更准确的评估和更有效的优化,借助有限元理论和子结构理论建立了车体和转向架构架等关键零部件的柔性动力学模型;基于天棚半主动控制算法和柔性多体动力学理论,建立了考虑半主动控制悬挂的地铁车辆刚柔耦合动力学模型;考虑轨道随机不平顺的影响,研究了半主动控制悬挂以及结构柔性对地铁车辆运行稳定性和乘坐舒适性的影响。研究结果表明:相对于传统的悬挂装置,天棚半主动控制极大降低了车辆的振动加速度,并使其变化趋势更加平缓,对车辆的低频振动有明显的抑制作用;采用本文的研究参数,天棚半主动控制在直线段可使车辆的垂向Sperling指标和垂向振动加速度均方根(RMS)分别降低26.8%和7.5%,使车体横向Sperling指标和横向振动加速度RMS分别降低8.8%和4.9%,而在曲线段,天棚半主动控制可使车辆垂向Sperling指标和垂向振动加速度RMS分别降低25.1%和5.7%,使横向Sperling指标和横向振动加速度RMS分别降低15.6%和8.3%,车辆的乘坐舒适性和运行稳定性大幅提升;考虑结构柔性时,车辆的垂向Sperling指标和垂向振动加速度RMS相比于未考虑结构柔性时分别增大了4.3%和6.8%,横向Sperling指标和横向振动加速度RMS分别增大了3.0%和3.4%。可见,车体和构架的结构柔性对车辆的动态特性有较大影响,在对车辆运行稳定性和乘坐舒适性进行计算和评估时不可忽略。   相似文献   

16.
在MATLAB/SIMULINK中建立了七自由度车辆主动悬架模型,以提高车辆行驶平顺性为控制目标,主动悬架作动器的输出力为控制对象,根据最优控制原理设计出了基于轴距预瞄信息的主动悬架控制策略.仿真结果表明,与无预瞄系统的控制策略相比,基于预瞄信息的最优控制策略能够有效地降低车身垂直振动加速度、车身侧倾角加速度和俯仰角加速度,车辆行驶平顺性明显提高.  相似文献   

17.
为了提高整车的平顺性,采用机械系统动力学分析软件MSC.Adam s建立了某车的虚拟样机模型;实现了随机输入路面平顺性仿真;考虑了悬架的刚度、阻尼参数对整车平顺性的影响,最后采用试验优化技术中的近似D-最优设计对悬架参数进行优化,极大改善了整车的平顺性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号