首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
预应力控制是通过张拉设备来实现的,传统的千斤顶施力,油压表控制读数方式正逐步被新研制的智能张拉设备系统替代,但是目前对智能张拉系统还没有建立成熟统一的检验方法,造成张拉力精度控制监管缺失,安全风险隐患越来越突出。提出了通过模拟钢梁以及轮辐式测力传感器对智能张拉设备进行检验的基本体系和基本方法,并通过试验验证了轮辐式测力传感器在温度变化、偏载及正常加载多工况下的稳定性和可靠性,建立了智能张拉设备现场张拉力示值精度和稳定性控制精度的检测方法,应用于河北在建高速公路检测,为预应力质量控制提供了保证。  相似文献   

2.
智能张拉技术已在全国高速公路桥梁施工中普遍使用,很好地解决了预应力张拉过程中的操作随意性问题,但也存在智能张拉设备故障和性能劣化以及由于同步控制计算模型缺陷导致的难以真正同步张拉等张拉质量风险问题。针对这些智能张拉质量风险问题,提出了新一代智能张拉:云张拉。云张拉通过采用云计算技术,构建基于Hadoop的云张拉系统,建立基于数据挖掘的设备故障自动诊断模型及基于神经网络的PID同步张拉控制模型对预应力张拉过程进行自动化精确控制及故障实时诊断,在此基础上开发了"智桥"ZQ2000云张拉系统,很好地解决了传统智能张拉设备故障和同步控制质量风险问题,消除了预应力智能张拉的质量隐患。  相似文献   

3.
结合现浇箱梁的实际预应力张拉施工,分析自动张拉技术的优点,同时考察现浇箱梁短束预应力筋和长束预应力筋张拉过程中关键因素的控制情况。研究表明:自动张拉技术能够严格控制张拉过程中的张拉力、伸长量以及张拉同步性的现行规范要求,现浇箱梁的长束张拉应增加控制张拉第三行程阶段的控制应力的持荷时间,来保证有效预应力的传递时间,张拉第一行程的初应力大小应该根据管道的长短做适当调整,以保证张拉过程中管道全程非线性因素对伸长量计算的影响。  相似文献   

4.
预应力张拉作为桥梁工程的关键工序,是保证桥梁质量的关键。结合预应力自动张拉技术在海外印尼雅万高铁项目中的应用,首先对自动张拉的工作原理、工艺流程进行了说明,后针对施工人员投入、施工成本投入、质量控制等方面对自动张拉与传统张拉进行对比分析。预应力自动张拉技术质量控制水平高,对操作人员能力要求降低,将在海外工程预应力施工中发挥越来越大的作用。  相似文献   

5.
自锚式悬索桥受力复杂,吊索张拉是整个施工的难点所在。研究了吊索张拉的特点,按照多项张拉原则制定出张拉方案,提出张拉的施工和控制过程中的注意事项,可为自锚式悬索桥提供吊索张拉相关方面的参考。  相似文献   

6.
预应力智能张拉施工技术应用及控制要点   总被引:1,自引:0,他引:1  
预应力张拉施工是桥梁工程施工中的关键工序,是保证桥梁质量、结构安全和耐久性的关键,而传统的张拉技术受到监测手段的限制,无法有效的进行质量控制.通过在同等条件下制作2片T梁以及在三角岩连续刚构大桥的节段预应力张拉施工中采集的50组数据,从伸长量、张拉力及预拱度三方面对传统人工张拉技术与智能张拉技术进行比较分析,指出了智能张拉技术在现场施工中的注意要点.  相似文献   

7.
智能系统的高精度和稳定性,使智能张拉技术能完全排除人为误差因素,精确施加应力、及时校核伸长量实现"双控"、对称同步张拉、规范张拉过程并减少预应力损失、自动生成报表、杜绝数据造假。通过在预制小箱梁施工中的应用,给出了智能张拉系统在箱梁施工中的使用注意事项,并与传统手工张拉对比,分析了其技术性与经济性。实践证明,其值得推广应用。  相似文献   

8.
智能张拉概念 智能张拉是指不依靠工人手动控制.而利用计算机智能控制技术.通过仪器自动操作.完成钢绞线的张拉施工。在如今的桥梁道路建设中,预应力施工被广泛应用,其中关键工序张拉.其施工质量的好坏.会直接影响结构的耐久性.但是传统张拉施工,纯靠施工人员凭经验手动操作,误差率很高,无法保证预应力施工质量。不少桥梁因为预应力施工不合格,  相似文献   

9.
研究我国目前土木建设工程中的预应力智能张拉系统,并深入分析其结构组成。该系统可在钢绞线、地锚索、先张梁和张梁等领域使用。其次本文还大致叙述了有效预应力测量方法,这种方法以磁通量技术的预应力张拉为基础。最后在结尾的部分描绘了智能张拉系统和有效预应力测量方法在工程中的应用。使用本文所说的智能张拉系统有很多优点:第一,该系统有预定的程序,所以能够科学、规范地对预应力施工进行记录和监管。第二,因为该系统是智能技术,所以它可以将误差降到最低,能够提高预应力张拉施工的质量。  相似文献   

10.
叙述了智能张拉压浆系统与传统的预应力张拉和压浆的特点以及智能张拉和压浆的工艺与传统的对比,并同时阐述了智能张拉和压浆的发展前景。  相似文献   

11.
针对目前T梁预制施工建设过程中应用传统张拉压浆技术的弊端,文章分析了智能张拉压浆系统技术的应用重要性、工艺过程问题以及人工操作问题。结果表明,在T梁预制施工中,应用智能张拉压浆系统,将起到提高施工管道密实度、减少工程建设成本以及降低预应力张拉误差。  相似文献   

12.
结合桥梁预应力张拉和压浆施工工艺要求和智能控制技术的发展,主要阐述了智能张拉和压浆设备的技术原理、设备结构和操作技术要点,对桥梁预应力张拉和压浆施工具有技术指导作用。  相似文献   

13.
主要讨论了预应力智能张拉施工技术的应用方法与优势,以求为未来公路桥梁预应力施工建设提供理论支撑。先简单讨论了预应力张拉施工技术的优势,再对预应力智能张拉施工技术的应用方法进行。从该工程的应用效果来看,预应力智能张拉施工技术能有效满足其施工质量控制的需要,具有良好的应用价值,能满足多种施工条件下的预应力施工质量控制要求,可以在更多地区进行推广。  相似文献   

14.
相比于传统预应力张拉技术,预应力智能张拉可以更好地确保施工安全和质量,保证施工工期并节约施工成本。但在实际张拉过程中,采用智能张拉控制技术存在数据异常的问题。文章结合安徽某国道改建工程实例,对预应力张拉数据进行处理和分析,并进行现场实际调查,分析智能张拉数据误差产生的原因,以期为类似工程施工提供参考。  相似文献   

15.
介绍庄河市建设大街东桥吊索张拉控制过程,研究混凝土自锚式悬索桥吊索张拉过程中的力学特性,优化吊索张拉过程。采用部分交替前进张拉法,通过对中跨吊索3轮张拉顺利实现了体系转换,使主缆的线形、加劲梁的线形、索鞍顶推量和吊索力都达到了设计要求。  相似文献   

16.
桥梁工程预应力结构采用智能张拉系统,可有效建立结构预应力体系,避免传统张拉弊端,提高预应力张拉精度,大大降低了桥梁全寿命周期成本,值得大力推广应用.  相似文献   

17.
工程概况 某桥梁结构形式为变高度连续箱梁,单箱单室截面,其中截面中心处梁高3.83~6.4m,箱梁顶板全宽12.2m,箱梁采用斜腹板型式,截面中心箱梁顶板厚42cm,底板厚45~80cm,腹板厚45~80cm,于支承处箱梁顶、底、腹板局部加厚。全桥共设5道横膈板,分别设于中支点、端支点、中跨跨中截面。结合本桥梁箱梁采取预应力张拉工艺,从工程实践情况表明,纵向钢绞线的张拉是控制工期的关键工序,在梁段砼强度达到设计张拉强度后即可进行张拉,横向张拉在挂篮前移就位后进行,竖向粗钢筋的张拉待纵向、横向张拉完成后进行。但纵向与竖向张拉梁段数之差不得大于3节,并且严格按照操作规程对千斤顶、油表进行检测。张拉采用“双控”法进行,即根据“0→10%σk(初张拉)→105%σk(超张拉)→σk”来控制张拉力,以伸长值来校核。对于张拉完成后采取压浆施工也是一个重点环节,现将针对主梁预应力施工中的张拉以及压浆环节来进行深入探讨,为同行借鉴。  相似文献   

18.
预应力筋采用应力控制方法张拉时,应以伸长值进行校核,实际伸长值与理论伸长值的差值应控制在6%以内,否则应暂停张拉,待查明原因并采取措施予以调整后,方可继续张拉。因此,在预应力张拉前,需对预应力钢筋的理论伸长值进行计算。  相似文献   

19.
桥梁工程预应力结构采用智能张拉系统,可有效建立结构预应力体系,避免传统张拉弊端,提高预应力张拉精度,大大降低了桥梁全寿命周期成本,值得大力推广应用。  相似文献   

20.
混凝土自锚式悬索桥吊索张拉是其体系转换过程中最复杂的施工工艺,也是区别于地锚式悬索桥的一个施工控制难点。结合实际工程采用有限元分析软件Midas/Civil对混凝土自锚式悬索桥吊索张拉进行了理论分析,研究了张拉过程中吊索的力学特性,并提出了施工过程中如何控制主缆的线形、加劲梁的线形、索鞍顶推量和吊索力,大幅度地提高张拉的效率精度,为此后同类桥梁施工提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号