首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 312 毫秒
1.
建立了2种客车骨架模型和2种声腔模型,并计算了4种模型的模态参数,分析了带蒙皮的骨架模型模态和带座椅的声腔模型模态之间的耦合情况。进行频率响应分析,找到车内测点峰值振动频率,并估计了车内声场分布。以声学传递向量分析为基础,计算了各车身板件振动对车内噪声的声学贡献量,为改进结构降低车内噪声提供了参考。  相似文献   

2.
为进一步开展桥梁结构噪声的研究,基于有限元-瞬态边界元法理论,对铁路32 m简支箱梁桥进行了时域振动响应及声辐射特性分析.首先,利用有限元软件ANSYS建立轨道-桥梁有限元模型;然后,运用车-线-桥仿真程序(TTBSIM),仿真计算得到轮轨相互作用力,并作为有限元模型的外部激励进行了列车动荷载作用下桥梁的时域振动响应分析;最后,以桥梁振动响应为边界条件,利用声学边界元软件Sysnoise研究分析了由列车动荷载引起的桥梁瞬态辐射噪声,并将测点声压计算值与实测值进行了对比验证.研究结果表明,200 km/h高速列车作用下桥面板振动级明显大于桥底板和桥梁腹板,桥梁主要噪声辐射部位为桥面板;桥梁结构噪声主要集中于低频段;随距离增加,噪声幅值逐渐减小,且高频噪声衰减速度明显快于低频噪声.   相似文献   

3.
为研究高速列车动车转向架气动噪声特性,建立了动车转向架空气动力学模型,采用定常RNGk-湍流模型与宽频带噪声源模型对其气动噪声声源进行初步探讨,并结合非定常LES大涡模拟与Lighthill声学比拟理论进行了远场气动噪声分析。研究结果表明:动车转向架气动噪声源为轮对、构架、牵引电机1、枕梁、垂向减振器、抗侧滚扭杆等结构的迎风侧凸起部位,且构架对动车转向架远场气动噪声的贡献最大,其次为轮对和抗侧滚扭杆,然后为垂向减振器和枕梁,牵引电机1、牵引电机2、空气弹簧和横向减振器对远场气动噪声的贡献较小。动车转向架远场气动噪声是宽频噪声,具有衰减特性、幅值特性和气动噪声指向性。在低频部分能量较大,中心频率为25、50Hz,且分布规律不随运行速度的改变而变化。   相似文献   

4.
从高速列车车内噪声频率特性入手,分析了高速列车低频结构噪声在车内声场中的重要作用.通过采用Virtual.Lab软件,创建了某高速列车中间车车体的结构噪声计算模型,并在Virtual.Lab软件中进行了声振耦合计算,分析了在车体转向架上方振动加速度激励情况下,车内噪声的频谱特性.结合经验性的测试结果,计算得到的结果具有一定的参考意义.通过创建更为准确的结构噪声计算模型,分析列车结构噪声的特性,为今后的高速列车研发设计提供参考.  相似文献   

5.
轻轨车室内噪声的数值预测   总被引:1,自引:0,他引:1  
分别建立了某出口轻轨客车有限元、边界元以及统计能量分析模型,通过施加单位激励载荷、轮轨辐射与空调声源载荷对该车室内低频与高频噪声进行了预测.在20 ~ 200 Hz频带内,司机室内的总声压级为52.2 dB(A),乘客室内的总声压级为59.0 dB (A);200 ~5 000 Hz频带内,司机室内的总声压级为70 d...  相似文献   

6.
建立了高速列车组包括头车、中间车、尾车及外部空间在内的气动噪声计算物理模型,从声学理论出发,结合列车实际运行的边界条件,运用以稳态结果作为初始值进行瞬态计算,预测了高速列车气动噪声,并对采用直接瞬态法计算气动噪声的可行性进行了分析计算.研究结果表明气动噪声分布于很宽的频带内,无明显的主频,属于宽频噪声.在低频中气动噪声...  相似文献   

7.
基于三维可压缩黏性流体模型对350 km·h-1速度下受电弓区域的非定常流场进行模拟,分析了受电弓底板上的脉动压力特征;利用波数滤波方法,对底板区域的脉动压力进行分离,得到了对流压力和声学压力,分析了2种压力在波数和频率域的特性;基于统计能量分析方法建立了简化的受电弓区域车内噪声预测模型,分析了2种激励对车内噪声的影响。研究结果表明:受电弓底板上的脉动压力具有显著的低频特性,随着频率升高,受电弓底板上脉动压力的幅值迅速减小;受电弓底架和绝缘子尾涡是影响受电弓底板上脉动压力幅值的主要因素;对350 km·h-1的高速列车气动噪声问题,波数滤波方法能够较好地将2种激励分离;受电弓底板上的声学压力幅值远小于对流压力,主要的差异频段为800~3 500 Hz,最大差异接近20 dB, 随着频率增加,二者差异变小;虽然声学压力的幅值远小于对流压力,但其对车内噪声的影响却大于对流压力,当频率高于2 500 Hz后,声学压力激励导致的车内声压级响应比对流压力高约10~20 dB,这是由于2种激励在波数空间内的能量分布差异,使得声学压力具有更高的透射效率,特别是当频率高于结构的吻合频率后,声压的贡献占绝对优势,对车内噪声的影响不可忽视。   相似文献   

8.
高速列车噪声是影响车内旅客舒适度和铁路沿线居民生活质量的重要因素,如何有效的降低噪声是高速列车设计者们所关心的问题之一.研究表明,高速列车的车内噪声由透射噪声与结构噪声组成,如何有效的从车内噪声中分离出这两种噪声成分将为列车的减振降噪设计提供一定的指导作用.本文以高速列车实车噪声数据为研究对象,首先运用多种数字信号处理的方法对高速列车噪声数据进行了分析,总结了高速列车噪声的主要特点;然后通过对列车静止时和运行时的噪声透射情形分别进行建模和分析,指出可以利用车体的频响特性作为反映车体隔声性能的声学参数,并提出了一种计算频响特性的简便算法;最后,利用该算法从实车噪声数据中计算出了车体的频响特性,并在此基础上实现了透射噪声与结构噪声的分离.  相似文献   

9.
针对运行列车引起的轨道交通桥梁结构噪声问题,总结了国内外轨道交通桥梁结构噪声的辐射特性、预测方法、产生机理、控制措施及工程应用等方面的研究成果,展望了未来的研究重点和发展方向。研究结果表明:轨道交通桥梁结构噪声主要集中于200 Hz以下的低频段,峰值一般出现在40~100 Hz;如何使用更先进的声源识别技术将桥梁结构噪声从综合噪声中分离出来,是准确分析桥梁结构噪声频谱特性和空间分布特性的关键;现有的桥梁结构噪声预测方法包括声学边界元法、统计能量分析等,声学边界元法的计算效率较低,统计能量分析主要用于钢桥噪声预测,发展大跨度混凝土桥梁结构噪声预测方法是当务之急;桥梁结构噪声峰值主要与桥梁结构的中高频局部振动特性和轮轨系统输入到桥梁结构的振动能量有关,桥梁的中高频局部振动特性对声辐射特性的影响机理尚未形成统一认识;目前常用的桥梁结构噪声控制措施有轨道减振措施和桥梁减振措施2类,桥梁减振措施对结构噪声的控制效果一般,轨道减振措施虽然能够有效降低桥梁结构噪声辐射,但同时可能引起轮轨噪声与道床二次结构噪声的增大,建议在保证经济性的条件下,综合运用各种控制措施,以取得最优的降噪效果。   相似文献   

10.
随着高速列车运行速度的提高,其气动噪声问题逐渐凸显,如何准确快速预测高速列车的远场气动噪声成为关键.利用半自由空间的Green函数求解FW-H方程,推导了考虑半模型时的远场声学积分公式,提出通过半模型的数值计算结果预测全模型高速列车远场气动噪声的方法;建立了全模型和半模型高速列车的气动噪声数值计算模型,应用改进延迟的分离涡模拟方法对不同模型高速列车表面的气动噪声源进行求解;通过风洞试验进行了全模型高速列车的数值仿真计算方法验证;对比分析了全模型和半模型高速列车周围的流场结构、气动噪声源和远场气动噪声特性.结果表明:半模型高速列车数值计算得到的列车周围流场结构、气动噪声源以及远场气动噪声特性与全模型的一致;采用半模型计算会过高估计列车尾车流线型区域表面压力的波动程度和噪声源的辐射强度,但通过半模型预测整车模型的远场噪声平均声压级误差小于1 dBA;相比于全模型高速列车,半模型计算时的网格总量减少一半.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号