首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
基于有限元方法,对不同方案的模型进行离散化,在Hyper Mesh中根据活塞的最恶劣工况加载,同时考虑热应力、预紧力以及压强等载荷.在ANSYS中进行计算,比较不同活塞模型在相同边界条件下,活塞销座以及螺栓的Von-Mises应力,由于修改了螺栓型号以及活塞销座上螺栓孔的大小,导致活塞裙上螺栓孔附近的应力和螺栓上的最大应力不同,根据计算结果筛选出了最佳的模型方案.结果表明:螺栓开孔尺寸与螺栓杆身应力有一定的相关性,增加开孔尺寸,会有效的减少螺栓杆身应力水平,但随着开孔尺寸增大,螺栓会承受一个额外的弯矩引起的应力,增加开孔尺寸会增加螺栓帽下方的最大应力,计算结果还表明增加开孔对于销座螺栓孔附近应力水平影响不大.  相似文献   

2.
对原有试验台架的信号处理和液压系统进行改进,进行了YJH315钣金型液力变矩器的牵引试验。应用三维流场数值计算方法,提出了YJH315钣金型液力变矩器外特性的动量矩方程、力矩方程与性能参数计算方法。分别通过MATLAB仿真软件和实测试验得到了不同转速比下的效率、变矩系数和公称力矩,并将仿真结果与试验结果进行对比分析。分析结果表明:当转速比在0~0.9时,试验工况下的最大效率为0.82,仿真工况下的最大效率为0.79,效率的最大误差约为2%;试验工况下的最大变矩系数为2.41,仿真工况下的最大变矩系数为2.29,变矩系数的最大误差约为3%;试验工况下的最大公称力矩为28.7N·m,仿真工况下的最大公称力矩为27.3N·m,公称力矩的最大误差约为3%。3个指标的误差均在可接受范围之内,说明提出的钣金型液力变矩器外特性计算方法可行。  相似文献   

3.
建立包含橡胶件的弹性车轮有限元模型,基于Abaqus软件仿真模拟弹性车轮组装过程.分析橡胶材料的力学特性,采用Mooney-Rivlin本构模型模拟其超弹性特性,考虑橡胶件大变形且不可压缩特性,建立多个接触关系和变步长反复迭代方法以保证计算收敛和缩减计算规模,研究压装过程各部件应力变化情况.仿真结果显示:压装完成后弹性车轮整体最大von-Mises应力为129.1 MPa,出现在压环与轮心过盈配合面处;最大径向应力为143.3 MPa,出现在轮心辐板圆弧过渡处.压装完成后弹性橡胶件最大von-Mises应力为8.1 MPa,径向应力均处于压缩状态.压装完成后轮毂与橡胶接触面应力在边缘位置处较大,轮缘侧应力略大于另一侧,且边缘位置应力大于中心位置处应力3倍.压装过程中轮心辐板位置最大应力随压装进行逐渐变小,最大应力位置逐渐靠近辐板厚度较薄的圆弧过渡处.压装应力作为车轮运营过程中的预应力.  相似文献   

4.
为准确评估矩形钢管混凝土组合桁梁桥节点疲劳性能, 引入热点应力法, 可通过平面杆系模型、空间杆系模型和三维实体模型计算节点焊趾处的热点应力幅, 并通过对52个节点疲劳试验数据回归分析, 拟合得到热点应力幅-循环次数曲线; 选取陕西黄延高速一座矩形钢管混凝土组合桁梁桥为典型案例进行节点疲劳评估, 并对原有节点设计方案的构造进行优化。研究结果表明: 相比于墩顶矩形钢管混凝土节点, 跨中矩形钢管节点热点应力幅更大, 为60.1 MPa, 发生在主管表面, 但是小于欧洲规范Eurcode中的容许疲劳强度71 MPa, 满足疲劳设计要求; 对跨中疲劳易损节点进行设计构造优化, 原设计矩形钢管节点变为矩形钢管混凝土节点后, 管内混凝土改变了节点局部刚度, 使相贯线焊趾处应力分布均匀, 支、主管表面热点应力幅平均降低25.1%, 对原设计节点进行焊缝后处理, 可有效消除焊接初始拉应力, 改善节点疲劳性能, 支、主管表面热点应力幅平均降低14.9%;采用空间杆系模型对优化后的跨中矩形钢管混凝土节点进行疲劳评估, 支、主管表面最大热点应力幅分别为58.9、54.1 MPa, 大于三维实体模型计算得到的支管和主管表面最大热点应力幅45.2、47.1 MPa, 空间杆系模型计算结果偏保守, 且无法像三维实体模型一样准确计算不同热点位置的疲劳效应, 也无法准确判断疲劳开裂起始位置。   相似文献   

5.
基于ANSYS有限元分析软件,建立斜拉桥索梁锚固区空间模型,分析了在最大斜拉索索力下,索梁锚固处的受力情况,并对局部配筋进行计算.结果表明:锚固区三向应力分析中,锚固处横梁与腹板结合处存在1.82 MPa拉应力,锚块与腹板相交位置最大拉应力接近2 MPa,边腹板位置拉应力为3.2 MPa,需对其进行配筋加固;锚块与边腹板结合处出现6.25 MPa拉应力,需进行配筋处理,其余位置总体受力情况良好.  相似文献   

6.
针对高速动车组焊接构架的结构特点,建立某型高速动车组转向架焊接构架有限元模型,基于TB/T 2368-2005标准对焊接构架进行静强度分析,遴选出相对薄弱部位,并基于动应力法对选取的薄弱部位进行动应力计算,结合材料的Goodman疲劳曲线,评估焊缝区和非焊缝区的疲劳强度.结果表明:超常载荷工况下,构架的最大应力出现在焊缝区,为296 MPa,13种模拟运营工况下,无缝区的最大应力为225 MPa,焊缝区的最大应力为195 MPa,均未超出结构材料的许用值. 6个考察部位中只有侧梁下盖板和转臂座连接处的应力幅略高于焊缝疲劳许用应力,其余各部位的动应力均符合设计要求.  相似文献   

7.
为探明高地应力场主应力方向对软岩隧道围岩稳定性的影响规律,采用自主研发的"隧道三维应力场模拟试验系统"开展了大型三维地质力学模型试验,研究了最大水平主应力与隧道轴线平行和垂直两种工况下软岩隧道的围岩稳定性.研究结果表明:最大水平主应力与隧道轴线平行时,拱顶沉降和拱脚收敛的最终值分别为-0.221 m和-0.454 m,拱顶、左拱脚、右拱脚和仰拱处的围岩压力分别为0.478、0.361、0.416 MPa和0.261 MPa;最大水平主应力与隧道轴线垂直时,拱顶沉降和拱脚收敛的最终值分别为-0.309 m和-0.548 m,拱顶、左拱脚、右拱脚和仰拱处的围岩压力分别为0.579、0.652、0.593 MPa和0.327 MPa;两种工况下,围岩压力的最小值均出现在仰拱处、最大值均出现在墙脚处,围岩的径向应变增量均为拉应变增量,切向应变增量均为压应变增量,说明隧道开挖导致洞周围岩径向应力减小、切向应力集中.   相似文献   

8.
对某型舰船管路系统在水下爆炸作用下的冲击响应进行了仿真及试验分析,得出如下结论:加速度响应最大值的仿真值与试验值的误差在30%以内;应变响应仿真的绝对值最大值与试验值最大值的误差在30%以内;随着爆炸距离的增大,最大冲击位移呈递减趋势;最大冲击应力也呈递减趋势,但出现的位置一般为弯管处.仿真及试验的结果表明应用ANSYS软件对舰船管路系统在水下爆炸作用下的冲击响应进行计算是可行的.  相似文献   

9.
特大跨径钢桁拱桥施工过程模型试验   总被引:1,自引:0,他引:1  
为探讨重庆朝天门长江大桥主桥施工过程中的力学行为,提高施工安全性,对该桥主桥施工全过程进行了1∶40的缩尺模型试验,研究了主桥的施工工艺,量测并分析了各控制工况下主桥各关键杆件的应力.对模型桥模拟施工全过程进行计算机仿真,并将仿真结果与模型测试值进行了比较.结果表明:模型试验可以较好地模拟原型桥施工过程中的受力状态;该桥最大拉应力和最大压应力均出现在单排扣索最大悬臂工况,且未超过规范限值;刚柔系杆分级转换比一次转换更为平稳可行.  相似文献   

10.
目前浅埋偏压隧道围岩压力主要采用隧规计算方法,而对于左右洞隧道洞门不在同一里程,一侧需要开挖路基边坡,使隧道从自然放坡状态转为邻路基变坡状态的工况,隧规不适用于计算其围岩压力. 依托安徽某高速公路,运用极限平衡原理推导了邻路基变坡条件下浅埋偏压隧道围岩压力解析解. 计算结果表明:由于变坡的存在,深埋侧修正算法计算竖向围岩压力小于规范法,相对误差为15.98%,水平围岩压力保持不变;浅埋侧修正算法计算竖向围岩压力及水平压力均小于规范法,其竖向压力相对误差为24.93%,水平压力相对误差为5.50%,变坡的存在对浅埋侧影响较大;对比围岩竖向及水平偏压率,有变坡围岩偏压率更大;围岩位移、应力及等效应力,有变坡约为无变坡的1~5倍,围岩及结构更加偏于不安全.   相似文献   

11.
接触网和受电弓是电气化铁路供电系统中的重要组成部分,其中弓网之间的动态接触又是保证电力机车良好受流的关键条件,所以寻求良好的弓网关系是铁路供电系统设计的一个重点.考虑到目前弓网接触力大多采用接触式检测手段,对于非接触检测的研究方法较少,故提出了一种基于图像处理算法检测弓网接触力的新方法.简化受电弓弓头结构,分析了弓网接触力与弓头位移之间的关系,建立弓网接触力计算模型;并在弓网混合模拟试验台进行地面验证实验:首先,利用图像处理模块对采集到的图像进行标记点的目标跟踪与特征提取;然后,通过数据处理模块对得到的位移信息进一步分析得到弓头加速度等信息,修正得到加速度信号;最后,对经过惯性力和阻尼力修正后的接触力结果进行分析.结果表明:通过图像处理检测得到的弓头位移最大测量误差仅为1.3 mm,精度较高;同时检测得到的弓网动态接触力的最大值、平均值和标准差的最大相对误差仅为5.46%、5.15%和4.58%,测量误差较小.结果证实此方法检测弓网接触力是可行的,且检测精度满足要求.  相似文献   

12.
基于伽辽金变分原理,利用有限元方法,建立了轮轨摩擦耦合热弹性有限元分析模型,分析了轮轨摩擦热与钢轨接触区热膨胀位移、摩擦温度、应变和应力的关系。模型中温度场和位移场由耦合方程同时求解,但没有考虑惯性项和材料阻尼的影响。分析结果表明:耦合求解的温度场和位移场与非耦合求解的温度场和位移场的计算结果一致,钢轨表面各点滑动位移的方向与车轮滑动方向一致,垂向位移方向先负后正;钢轨表面各节点进入接触区后,温度快速上升,但高温持续时间短;在滑动方向上,钢轨接触点先受压应变后受拉应变作用,垂向受拉应变作用,滑动方向压应力明显高于垂向压应力,钢轨接触斑前后节点滑动方向应变符号相反;垂向高正应变区主要集中分布在接触斑后半轴上,最大剪应变与剪应力区在接触表层以下。  相似文献   

13.
进行了高速列车线路试验, 研究了GPS信号与齿轮箱结构的受力特点, 获取了扭矩载荷和振动载荷作用下齿轮箱的应力时间历程曲线, 分析了在扭矩载荷、振动载荷作用下齿轮箱的应力响应特性, 并编制了应力谱, 利用疲劳损伤影响参数来反映扭矩载荷和振动载荷对齿轮箱疲劳损伤的影响程度。研究结果表明: 在扭矩载荷作用下, 列车牵引与制动的交替变化会使齿轮箱产生较大的应力响应, 最大应力幅值为25.80MPa; 在制动工况下, 齿轮箱应力呈阶梯形变化; 列车低速运行时齿轮箱吊杆座端部的高应力幅值频次大于高速阶段, 结构疲劳损伤影响参数由0.20减小到0.08, 减小了60.0%。在振动载荷作用下, 列车运行速度由350km·h-1减小到200km·h-1时, 齿轮箱吊杆座端部的应力响应强度由2.08MPa减小到0.97MPa, 降低了53.4%;在同一速度等级下, 列车头部齿轮箱的应力幅值低于列车尾部; 列车由牵引状态转变为惰性运行时, 齿轮箱的应力响应强度由3.4MPa减小到1.0MPa, 降低了70.6%;列车由低速运行转为高速运行时, 齿轮箱端部疲劳损伤影响参数由0.009增大到0.260, 增大了27.9倍。   相似文献   

14.
采用Tekscan压力测量系统现场测试了遂宁—重庆客货共线无砟轨道钢轨支点压力, 提出了高斯函数型钢轨支点压力时程表达式, 并通过现场实测数据对其进行验证; 根据钢轨支点压力时程表达式, 采用时序式加载法对轨道结构模型施加荷载, 并将其动力响应结果分别与车辆-轨道-路基垂向耦合振动模型的计算结果和现场实测结果进行对比。研究结果表明: 现场实测客货车对钢轨支点的最大压力分别为29.91和82.49 kN, 与中国铁道科学研究院测试结果的相对误差小于20%, 故Tekscan压力测量系统可精确测试钢轨支点压力; 高斯函数拟合所得客货车对钢轨支点压力的时程曲线与实测曲线的相关系数分别为0.962 7和0.966 7, 最大压力与现场实测值的相对差异分别为5.15%和0.46%, 最小压力与现场实测值的相对差异分别为7.23%和24.11%, 故采用高斯函数能较好地模拟客货车对钢轨支点压力的时程曲线, 且货车作用下钢轨支点压力时程的模拟精度略高于客车; 基于时序式加载法的荷载激励-轨道-路基模型计算结果与车辆-轨道-路基垂向耦合振动模型计算结果和现场测试结果相比, 轨道板最大位移相对差异分别为5.41%和2.70%, 底座板最大位移相对差异分别为2.86%和5.71%, 轨道板最大加速度相对差异分别为14.00%和23.20%, 底座板最大加速度相对差异分别为13.61%和8.73%。可见, 基于时序式加载法和高斯函数型钢轨支点压力时程表达式的荷载激励-轨道-路基模型可靠, 该方法无需建立车体模型, 既能保证计算效率, 又具有很高的精度。   相似文献   

15.
应用Pm/E建立发动机连杆的三维实体模型,将简化后的模型导入ANSYS软件中,再进行网格划分。施加约束和载荷,建立连杆有限元模型,然后进行连杆有限元分析,得到变形过程中的应力场、应变场的分布。为进行发动机连杆的结构分析建立基础。  相似文献   

16.
为评价计算网格对明线列车空气动力学数值仿真计算结果的影响,基于计算流体力学,研究了计算网格对列车气动特性的不确定性. 首先根据3种不同尺寸的计算网格及其计算结果,提出了计算网格对列车气动力和表面压力不确定性的计算方法;其次以ICE2列车为研究对象,划分了3种不同尺寸的计算网格,数值仿真得到了列车气动力和典型截面的压力;最后研究了该列车头车气动力和典型截面压力的不确定性. 研究结果表明:数值仿真得到的气动侧力系数与试验数据的误差仅为0.31%;车身迎风侧表面压力的不确定性接近于0;车身表面压力不确定性较大的位置主要位于车体底部,其最大不确定度达到1.42;头车侧力系数的不确定度为0.002 6,而头车升力系数的不确定度为0.509 3.   相似文献   

17.
目的 测试椎弓根螺钉器械受力状态 ,为脊柱内固定器械的研制及应用提供理论依据。方法 利用聚酰胺棒加工成人工椎体模型 ,将椎弓根螺钉器械植入椎体模型 ,模拟脊柱最不稳定状态———椎体完全缺失且无韧带影响 ,在试验机上以 5 0N的增幅逐渐增加载荷 ,记录不同载荷下的前屈应变值 ,计算器械在轴向压力及弯矩下的应变值。结果 弯曲受拉应变值明显高于弯曲受压应变值 ;弯矩应变值明显高于轴向压力应变值。在相同的载荷下SDR的应变值明显低于VSP与Dick器械的同侧应变值。结论 椎弓根螺钉器械受力以弯曲力矩为主。  相似文献   

18.
针对大系统仿真分析方法与试验结果出现偏差问题,基于实际线路测试数据,以车体子系统为仿真对象,辅助于模拟台架的试验数据,建立了26个自由度的多体仿真模型,实现了车体线路动态响应的仿真计算. 结果表明:摇枕垂、横向加速度响应结果仿真与试验RMS (root mean square)误差最大值为9%. 在1.5~15.0 Hz主要频率段,车体枕梁垂、横向振动加速度的试验结果和仿真结果的RMS误差低于8.57%,车体关键焊缝仿真与试验的动应力响应波形基本一致. 通过与试验结果的对比验证,仿真结果基本反映了车体在实际线路运行时的动态响应情况.   相似文献   

19.
矮塔斜拉桥索鞍受力分析   总被引:1,自引:0,他引:1  
以一座矮塔斜拉桥为研究对象,采用空间有限元方法计算了索鞍的受力情况,将索力比较真实地转化为抛物线形面压力施加在各个对应孔道上,并分析了孔道施工偏差对运营阶段塔的影响。  相似文献   

20.
为了解决现有失效准则无法满足粘接结构真实失效预测的问题, 利用试验测试与仿真分析相结合的方法建立一种基于应力的断裂失效准则; 设计了5组典型拉剪比的ISR-7008/铝合金粘接接头, 并对5组不同拉剪比的粘接接头进行准静态拉伸试验, 获得了初始断裂载荷与最大断裂载荷, 确定了胶层断裂失效点的起始位置; 建立了粘接接头的仿真模型并在仿真模型中施加初始断裂载荷, 提取出5组典型拉剪比的接头失效区域内初始断裂点的各种应力; 通过对失效点的各种应力进行比值和线性组合处理, 得出等效应力计算公式, 基于该等效应力计算公式建立适用于粘接结构的初始失效和后续失效统一的失效准则; 设计了验证试验方案, 通过对比试验结果和仿真结果, 分析了失效准则的有效性。分析结果表明: 在75°嵌接接头中, 仿真分析获得的失效载荷为1 717.6 N, 试验测试获得的失效载荷为1 936.4 N, 试验和仿真的相对误差为11.3%;仿真结果与试验测试的胶层失效过程基本吻合, 验证了本文建立的失效准则的有效性。建立的基于应力的失效准则实现了粘接结构初始失效准则和后续失效准则的统一, 可以较为准确地预测复杂应力状态下粘接接头的失效过程, 并且该失效准则解决了弹性粘接剂厚胶层的仿真问题, 为工程实际应用中的粘接结构强度设计提供了一定参考。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号