首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
RAP中有效沥青膜厚度测定   总被引:3,自引:0,他引:3  
在分析旧沥青混合料(RAP)中旧沥青存在状态的基础上提出了RAP有效沥青膜厚度的概念;通过再生混合料构成分析进行有效沥青公式推导,计算RAP中有效沥青含量;采用比表面积系数法计算RAP中有效沥青膜的厚度;通过分散活化处理RAP沥青表面,进一步提高RAP有效沥青膜厚度。研究发现:RAP混合料表面总沥青膜厚度为4.889μm,再生混合料、E再生混合料、F-E再生混合料中RAP有效沥青膜厚度分别为2.912,2.785,4.604μm,说明外加剂F-E对RAP混合料颗粒表面具有活化作用,提高了RAP表层有效沥青膜厚度。  相似文献   

2.
沥青膜厚度对沥青混合料老化性质的影响   总被引:3,自引:0,他引:3  
一般认为,只要有足够厚的沥青膜裹附在集料上,就能保证沥青混合料的耐久性.最小的沥青膜厚度被推荐为6~8μm,本文通过不同的沥青膜厚度与沥青混合料老化特性之间的关系,给出一个合理的最佳范围.  相似文献   

3.
为明确沥青膜厚度对沥青混合料高温抗剪性能的影响,通过室内60℃下的车辙试验分析AC—13及AC—20两种级配类型的混合料在沥青膜厚度不同时的抗剪性能,沥青膜厚度对混合料动稳定度、抗剪强度及稳定值GSI有一定的影响。研究结果表明:沥青混合料的动稳定度随沥青膜厚度的增加迅速降低,二者之间有显著的线性关系;沥青混合料稳定值GSI及抗剪强度受沥青膜厚度影响明显,稳定值与沥青膜厚度有较好的二次相关性。  相似文献   

4.
通过沥青膜厚度、空隙率和沥青混合料中矿料间隙率之间关系,估算矿料间隙率或沥青膜厚度,验算沥青混合料耐久性。  相似文献   

5.
首先进行原材料的检测,然后按照工地施工级配,进行一系列研究,探讨了沥青膜有效厚度对沥青混合料高温稳定性的影响.通过控制不同的油石比来控制沥青用量,以此实现沥青膜有效厚度的变化,研究了油石比与沥青膜有效厚度的关系、油石比与动稳定度的关系及沥青膜有效厚度与动稳定度的关系.试验表明:油石比与沥青膜有效厚度存在线性关系;油石比、沥青膜有效厚度与动稳定度存在三次曲线关系;根据拟合曲线得出,当沥青膜有效厚度为8.7 ~8.8μm时,沥青混合料的高温稳定性最佳,动稳定度最大.  相似文献   

6.
为了更好地研究沥青膜有效厚度对沥青混合料高温稳定性的影响,本文首先对原材料进行了检测,然后按照工地施工级配对其进行了一系列的研究。而研究结果显示出:沥青膜有效厚度一旦增加,其沥青混合料高温稳定性就会降低,两者之间的关系是线性的关系。  相似文献   

7.
本文介绍了沥青混合料中沥青膜厚度的重要性,讨论了现行规范方法中沥青膜厚度公式的来源,并指出其不足点,给出了新的沥青膜厚度计算模型。该模型考虑了集料的物理特性,如颗粒形状、密度等.为综合分析沥青膜厚度对沥青混合料性能的影响打下基础。  相似文献   

8.
影响沥青混合料水稳定性的因素有很多,主要研究沥青膜厚度与水稳定性之间的关系。通过旋转压实仪成型5种沥青膜厚度的圆柱体试件,采用改进Lottman试验评价不同沥青膜厚度的沥青混合料水稳定性。试验结果表明:沥青膜厚度与改进Lottman试验结果相关性好,基于水稳定性优化设计的最佳沥青膜厚度为9~11μm。  相似文献   

9.
通过浸渍试验测定了不同粒径钢渣集料的有效相对密度, 提出了钢渣沥青混合料体积参数的确定方法, 采用残留稳定度、冻融劈裂强度比与沥青膜厚度对不同钢渣掺量的沥青混合料水稳定性进行评价, 借助X射线荧光光谱分析、扫描电镜试验和压汞试验, 从钢渣化学组成与微观结构方面分析了钢渣对沥青混合料水稳定性的影响机理。分析结果表明: 对于钢渣等吸水性较大集料, 采用浸渍试验实测的有效相对密度较计算法得到的有效相对密度增大了1.5%, 更接近集料的实际有效相对密度, 因此, 采用浸渍试验确定的钢渣沥青混合料体积参数更加合理; 随着钢渣掺量增大, 钢渣沥青混合料水稳定性逐渐提升, 当钢渣掺量为70%时, 钢渣沥青混合料的残留稳定度提高了12%, 冻融劈裂强度比提高了13%;钢渣沥青混合料沥青膜厚度随钢渣掺量增大而增大, 当钢渣掺量为70%时, 沥青混合料的沥青膜厚度增大了13%, 较厚的沥青膜可有效防止水分入侵, 并增大集料表面“结构沥青”含量, 从而提高钢渣沥青混合料的水稳定性; 钢渣沥青混合料沥青膜厚度计算值为67μm, 由于其水稳定性与沥青膜厚度正相关, 故推荐基于水稳定性的钢渣沥青混合料的沥青膜厚度为7μm; 钢渣呈超碱性, 表面多孔隙, 孔隙内部结构复杂, 增大了钢渣集料与沥青间有效接触面积, 并形成较好的机械咬合力, 提高了钢渣集料与沥青之间的黏结性, 可显著改善沥青混合料的水稳定性。   相似文献   

10.
沥青混合料的油膜厚度对于级配设计和最佳沥青用量的确定有着极其重要的参考价值,橡胶沥青断级配混合料的级配组成、沥青用量与常规密级配混合料存在较大差异,通过室内试验研究了沥青膜厚度对橡胶沥青断级配混合料强度及体积指标的影响,并进行了试验路铺筑。研究表明,橡胶沥青断级配混合料的油膜厚度远大于常规密级配及断级配混合料,其适宜的油膜厚度在2021μm。  相似文献   

11.
沥青混合料油膜厚度计算方法   总被引:4,自引:0,他引:4  
为了精确计算沥青混合料油膜厚度,考虑了矿粉粒度、沥青混合料压实程度和沥青比例的影响,采用HORIBA-300型激光散射粒度分布分析仪对矿粉的粒度进行测量,分析了矿粉粒度的尺寸范围,提出了沥青隔离膜的概念,建立了沥青油膜厚度计算模型。采用旋转压实仪成型沥青混凝土试件,对比分析了沥青油膜的计算值与实际测量值。分析结果表明:采用新的油膜公式反算的沥青用量范围为4.55%~4.85%,采用传统方法反算的沥青用量范围为4.20%~5.20%,而试验最佳沥青用量为4.70%,显然新方法精度高。  相似文献   

12.
机场道面沥青盖被摊铺机械的配置与铺筑方法   总被引:2,自引:0,他引:2  
分析了摊铺机械的特性,结合工程实践,从沥青盖被的总宽度、厚度、跑道横坡度及沥青拌和站混合料的生产能力等因素综合对摊铺机械进行选型与配置,又通过对摊铺机作业的宽度、铺筑的幅数、作业段的长度等问题进行系统的试验,提出了沿跑道纵向全断面的铺筑方法与不停航施工措施.结果表明该方法既能保证施工质量,又能满足机场在不停航条件下的安全需要,是简单、可行的.  相似文献   

13.
通过对高粘度基质沥青(AH-30)、重交沥青(AH-70)及SBS改性沥青混合料进行SST剪切和贯入剪切试验,对比研究了3种不同沥青混合料的高温抗剪性能.结果表明:高粘度基质沥青混合料的高温抗剪性能优于重交和改性沥青混合料,抗高温车辙能力明显,可适用于南方湿热地区沥青路面中下面层.  相似文献   

14.
温拌沥青混合料的压实问题关系到温拌沥青混合料技术的推广运用。根据温拌沥青混合料的固有属性,从沥青路面材料、固结一液体流模型、温度应力场、压实机械等方面人手,分析温拌沥青路面材料性能、固结一液体流模型、温度梯度等对温拌沥青混合料压实机理的影响,探讨温拌沥青混合料压实应注意的问题。  相似文献   

15.
总结了钢渣的物理性质、化学成分及矿物相组成; 分析了影响钢渣体积安定性的因素及其改善措施; 探讨了钢渣沥青混合料的配合比设计方法; 分析了钢渣沥青混合料的路用性能(高温稳定性、低温抗裂性、水稳定性、抗疲劳性、体积安定性、抗滑性)及其功能特性(导电性与微波加热); 研究了钢渣沥青混合料的生态、社会及经济效益; 介绍了国内外的工程应用。研究结果表明: 钢渣可用于沥青混合料, 且应为陈化半年以上的转炉钢渣或电炉钢渣; 钢渣的物理力学性能优良, 而化学成分及矿物相组成受炼钢工艺影响有所区别; 钢渣体积安定性的不足可通过预处理或陈化处理得到较好的改善; 钢渣沥青混合料的配合比设计要点包括钢渣替代传统集料的方式和比例、沥青混合料级配修正、有效相对密度测定以及最佳油石比的确定; 钢渣沥青混合料的路用性能及功能特性优于天然集料沥青混合料, 具有较好的环境影响性且综合经济效益更高; 关于钢渣沥青混合料路用性能的研究较多, 而作用机理方面相对缺乏, 关键性的限制因素如密度较高、体积安定性不良、混合料沥青用量增加等仍未得到根本性解决; 未来应重点研究钢渣沥青路面的长期性能及质量控制体系, 并开展全寿命周期研究, 以加快钢渣沥青路面的应用与推广。   相似文献   

16.
钢桥桥面铺装层间剪应力影响因素及简化计算   总被引:5,自引:1,他引:5  
为了减小钢桥桥面铺装层间剪应力,建立桥面系三维有限元计算模型,分析了不同荷位、钢板厚度、U肋开口宽度、铺装厚度、铺装模量、层间接触条件以及轴载大小对铺装层间纵横向剪应力的影响,推导了实用的应力简化计算公式。研究发现桥面板不均匀变形使得铺装层间剪应力远大于同条件下的路面结构;影响显著的因素依次为轴载大小、钢板厚度、U肋开口宽度以及铺装参数;层间完全光滑有利于抗剪,但降低了桥面系整体刚度;控制重载,加强桥面系刚度与选择柔性层间粘结材料是减小层间剪应力的有效措施。  相似文献   

17.
通过提高短期老化温度,模拟高温生产工艺对沥青混合料老化性能的影响,以研究沥青混合料在拌和、运输、摊铺、碾压过程中抗老化性能的变化;根据不同老化时间(2 h,4 h)、不同老化温度(135℃,155℃)沥青混合料间接拉伸破坏试验结果的变化,证明了加热温度和时间对沥青混合料老化有明显的影响。试验结果表明:高温生产对抗车辙剂沥青混合料的抗老化性能有所削弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号