首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 325 毫秒
1.
为了保障车辆过岔的安全性并延长道岔使用寿命,基于刚柔耦合方法建立了精细化的车辆-道岔动力分析模型,研究了过岔方式、行车速度对车岔系统动力特性的影响规律,并对岔区设置轨距拉杆、改变岔区轨底坡、加宽尖轨及心轨断面3种措施的效果进行了评估.研究表明:设置轨距拉杆最大可以降低43.0%的轮轨横向力及5.1%的轮轨垂向力;当岔区轨底坡从1:40增加至1:20,直股线路 可降低10.7%的轮轨横向力及4.0%的轮轨垂向力,侧股线路轨可降低16.7%的轮轨横向力及14.8%的轮轨垂向力;尖轨、心轨断面宽度增加2 mm时引起的轮轨相互作用增幅最大为8.3%,但可降低18.8%的钢轨动弯应力.   相似文献   

2.
为研究动态轨距优化技术在重载道岔上的应用,以轮轨型面测量仪在大秦线上测得的数据为基础,建立三维弹塑性接触有限元模型,研究JM3型机车车轮和LM型货车车轮与CHN75钢轨12号单开道岔曲线尖轨接触问题,详细的分析了轨距加宽前后以及不同轨距加宽方案等多种工况下车轮与尖轨接触等效应力和接触斑变化.计算结果表明,轨距加宽后磨耗中期的LM货车车轮与尖轨接触时,接触应力明显降低,有利于减缓尖轨磨耗;货车车轮与尖轨接触的接触斑面积在各个位置处得到了大幅提高,由此可以看出转辙器动态轨距加宽技术有利于改善LM型货车车轮过岔时的轮轨接触作用,减轻尖轨磨耗和滚动接触疲劳;对比讨论不同的轨距加宽方案的计算结果可知,既有的轨距加宽方案相较于其它方案有比较理想的效果,计算结果为尖轨几何参数优化及设计,减轻尖轨磨耗,延长使用寿命提供了参考依据.  相似文献   

3.
为研究60N钢轨350 km/h 18号高速道岔合理的轨距和轨底坡,利用60N钢轨高速道岔关键断面和实测LMA磨耗车轮,基于迹线法原理和Kalker三维非赫兹滚动接触理论,分析不同轨距和轨底坡参数下的轮轨接触几何和力学特性,并与CHN60钢轨高速道岔计算结果进行对比. 结果表明:在保证安全的前提下适当将轨距加宽可改善轮轨匹配关系,提升列车过岔平稳性,减小轮对横移量大于8 mm时的轮轨接触应力和表面滚动接触疲劳因子,延长尖轨使用寿命;轨底坡为1/30、1/40和1/50时,轮轨接触参数相差较小,匹配性能较优;轨底坡为1/10和1/20时,横向不平顺和轮轨滚动接触疲劳因子普遍较大,且1/10轨底坡对车轮磨耗的适应性较差;与CHN60钢轨高速道岔相比,60N钢轨高速道岔的等效锥度普遍更小,列车过岔平稳性更优;车轮磨耗易导致车轮在轮轨过渡区段空转,引起尖轨伤损.   相似文献   

4.
结合现代有轨电车车辆-轨道耦合动力学子模型、轮轨多点接触子模型与Archard材料磨耗子模型,建立了车轮磨耗预测分析模型。与相关参考文献结果进行对比,验证了本文建立模型的准确性。利用该磨耗预测模型计算分析了轨距加宽对现代有轨电车通过小半径曲线轨道时车轮磨耗的影响。结果表明:在相同的线路条件下,独立车轮轮缘磨耗大于非独立车轮,差值最大为0.94 mm,而两种车轮踏面磨耗情况较为接近;曲线半径较小的线路,轨距加宽为10~15 mm时车轮轮缘磨耗较小,而轨距加宽为15 mm时车轮轮缘磨耗较为均匀。研究结果可为现代有轨电车车辆维护提供有益参考。  相似文献   

5.
高速道岔辙叉区轮轨接触不平顺   总被引:4,自引:2,他引:2  
为揭示高速道岔辙叉区不平顺特性,通过分析心轨、翼轨的结构特点,采用最小距离搜索法,建立了辙叉区轮轨接触计算模型,并以350 km/h客运专线42号高速道岔为例,分析了不同藏尖结构和车轮踏面的轮轨接触不平顺规律.结果表明:不平顺最大值出现在轨距测量点由翼轨向心轨转移处和轮轨接触点由翼轨向心轨转移处;同一种藏尖结构和车轮踏面,横向不平顺远大于竖向不平顺;采用水平藏尖结构并分别在心轨顶宽10.0,15.0,35.0 mm处降低10.0,3.0,0.0 mm,能有效控制不平顺;随着列车运行和车轮磨耗,不平顺会出现横向增大、竖向减小的现象.  相似文献   

6.
建立了一种适用于1 435/1 000 mm轨距变换、电机体悬的高速动车组变轨距转向架动车的动力学模型;重点计算在2种轨距线路上动车采用不同的轮轨匹配关系、不同磨耗状态下的运行稳定性分岔特性,并计算了轨距、轮轨游间对运行稳定性的影响;计算了车辆运行垂向和横向平稳性以及在不同曲线工况条件下车辆的曲线通过性能,结合相关动力学标准对各项动力学性能指标进行了评定,并对造成各项动力学指标差异的原因进行了简要分析;以电机体悬式变轨距转向架动车的12个悬挂参数为因子,以车辆蛇行失稳速度、轮轴横向力、轮轨垂向力、轮重减载率和脱轨系数5个动力学指标为响应,采用最优拉丁超立方设计方法进行试验设计;建立径向基神经网络代理模型,采用NSGA-Ⅱ多目标遗传算法对动车主要的悬挂参数进行多目标优化。计算结果表明:在设计工况条件下,所设计的高速动车组变轨距转向架动车在2种轨距线路上运行稳定性、平稳性和曲线通过性能均能满足设计要求;在1 000 mm轨距上运行的稳定性优于1 435 mm轨距情况,但运行平稳性和曲线通过性能劣于1 435 mm轨距情况;优化后的悬挂参数可以兼顾车辆的运行稳定性、平稳性和曲线通过性能,使车辆具有更好的动力学性能,在2种轨距线路运行上所有计算性能指标均满足相关标准。   相似文献   

7.
高速铁路道岔设计关键技术   总被引:9,自引:4,他引:5  
基于道岔轮轨多点接触关系,建立了高速道岔动力分析理论,并设计出适合我国高速道岔的相离式半切尖轨平面线型、心轨水平藏尖结构、尖轨短过渡顶面轮廓和弹性均匀的岔区轨道刚度.为解决无缝道岔转换卡阻问题,在考虑长大轨件纵横向协调变形的基础上,研发了适应大伸缩量的转换锁闭机构、既可有效传递纵向力又可保持道岔平顺性的尖轨及心轨跟端结构和适用于有砟和无砟轨道基础的扣件系统.为控制长大轨件转换不足位移,确保道岔的高平顺性和锁闭可靠性,运用有限单元法进行长大轨件及双肢弹性可弯心轨结构的转换设计,研制出新型辊轮滑床台,并优化了转换牵引点布置及其动程设计.  相似文献   

8.
编组场内使用的主型6号对称道岔发生多起脱轨事故,其安全问题一致未得到有效解决. 为探索脱轨原因、提出合理应对措施,首先基于准静态轮轨接触理论分析道岔区轮轨接触特征,进而建立车辆-道岔耦合动力学模型,以车轮动态抬升量为评价指标分析车辆、轨道、道岔结构参数对爬轨性能的影响特性. 结果表明:轮缘贴靠尖轨尖端时接触角仅为53°,脱轨系数临界值不足0.73,是导致6号对称道岔脱轨风险较高的根本原因;尖轨顶宽5 mm处降低值由14 mm减至10 mm、转辙角由1.1° 降至0.9°、无轨撑扣件的垫板刚度由150 kN/mm降至50 kN/mm等措施,均可使得车轮抬升量保持在3 mm以下;道岔前端设置长度不小于3 m直线段、保持良好的轴箱定位状态、尖轨侧面摩擦系数保持在0.3以下也有利于防止脱轨事故发生.   相似文献   

9.
利用轮轨型面测量仪对北京地铁六号线轮轨型面进行现场实测,采用样条曲线拟合方法获得并选取磨耗轮轨型面,利用有限元分析软件ABAQUS建立四组轮轨三维有限元模型,计算并分析了不同轮对横移量下轮轨间接触斑和最大等效应力分布状态,研究轮对横移量对直线段轮轨磨耗的影响,分析结果表明:地铁直线段不同轮对横移量下标准轮轨接触斑较规则,多数非标准轮轨接触斑呈"斑条"状,接触斑面积一般在轮对横移量-8、4和6 mm时较大;轮对横移量8 mm处,标准车轮与磨耗钢轨接触应力过大,钢轨轨距角处易产生应力集中,发生塑性变形;不同轮对横移量下磨耗车轮/标准钢轨匹配接触斑面积较大,最大等效应力较小,对减缓轮轨磨耗十分有利.  相似文献   

10.
以心轨顶宽20、35、50 mm处的辙叉区钢轨关键截面作为研究对象,基于NURBS曲线理论建立辙叉区钢轨廓形重构方法;以关键截面钢轨廓形上若干型值点为设计变量,以打磨材料去除量的减少和脱轨系数的降低为目标,以钢轨廓形几何特征和降低钢轨滚动接触疲劳为约束条件,设计出18号道岔辙叉区钢轨经济性打磨廓形;建立了轮轨接触有限元模型和车辆-轨道耦合动力学模型,进行了轮轨接触应力与动力学指标计算。分析结果表明:优化的打磨廓形接触点分布均匀,具有良好的轮轨接触几何特性;钢轨打磨材料去除量在2号截面处降低了17.2%;各截面Mises应力分别降低了8.7%、8.3%和11.5%,轮轨接触应力降幅分别为12.9%、15.8%和18.0%;列车逆侧向过岔时,轮轨横向力与车体横向振动加速度分别降低了10.3%和15.6%,脱轨系数与轮重减载率分别降低了8.1%和10.6%,疲劳因子降低了12.2%。可见,优化廓形在保证列车运行安全性的同时,提升了列车运行的平稳性以及辙叉区钢轨的使用寿命。   相似文献   

11.
为研究固定辙叉结构不平顺对列车过岔动力特性的影响,基于岔区轮轨系统动力学及轮轨接触关系理论,以12号提速道岔固定辙叉为例,分别建立了翼轨不同加高设计方案下的辙叉模型以及CRH2型车车辆模型,在此基础上,深入分析了翼轨加高设计对列车过岔动力特性、过岔速度以及行车平稳性的影响规律. 结果表明:列车过岔时,随着翼轨向外弯折,其轮轨接触区域开始外移,并由此造成辙叉区轮对质心垂向位置的降低;通过设置合理的翼轨加高值,可有效降低辙叉区轨道的竖向结构不平顺,进而抑制轮对质心垂向位置的降低,提高列车过岔的平稳性及旅客乘车舒适度;固定辙叉翼轨加高设计,可有效改善列车直向过岔动力特性,但对侧向过岔效果有限;当加高值设置为3 mm时,翼轨加高优化的效果最佳,与无加高设计相比,加高后列车直向过岔第一轮对横向和垂向轮轨力最大幅值分别降低了45.8%和30.3%,车体横向及垂向加速度则分别降低了42.2%和26.1%;随着列车运行速度的提高,过岔时的轮轨动力响应也开始逐渐加剧,合理的翼轨加高设计将有利于提高列车的过岔速度. 研究成果可为我国铁路线路道岔固定辙叉的结构优化设计提供理论参考.   相似文献   

12.
为指导高速道岔转换锁闭结构的优化设计,根据道岔区轮轨系统耦合动力学理论和有限元方法,建立了转换锁闭结构动态受力计算模型;以60 kg/m钢轨客运专线18号单开道岔转辙器外锁闭装置为例,研究了列车过岔速度、尖轨不足位移和顶铁离缝等对转换锁闭结构力学特性的影响.研究结果表明:列车过岔速度对转换锁闭结构力学特性有显著影响,当过岔速度为250 km/h时,其受力及变形到达最大;存在一定的尖轨转换不足位移,有利于改善转换锁闭结构的受力状态;顶铁离缝的增加使转换锁闭结构的受力几乎呈线性增加,在道岔运营过程中应尽量避免顶铁离缝出现.   相似文献   

13.
为合理选取固定辙叉心轨轨顶降低值,基于车轮踏面在翼轨和心轨间过渡时的轮轨接触几何关系和动力相互作用,提出了心轨关键断面降低值的选取及评价方法.以LMA型车轮踏面列车直逆向通过60 kg/m钢轨12号固定辙叉式道岔为例,用该方法对心轨轨顶降低值进行了优化.结果表明:心轨关键断面降低值的确定,在满足固定辙叉区轮载过渡的安全性和心轨承载断面强度要求的同时,应提高列车运行的稳定性;断面降低值越小,产生的轮轨相互作用越小,有利于提高行车性能,但需考虑此时轮轨作用位置是否超出心轨结构承载能力范围;60 kg/m钢轨12号固定辙叉心轨顶宽20和50 mm断面处,可分别取3和0 mm降低值作为优选方案.   相似文献   

14.
为研究尖轨变截面对曲尖轨轮轨接触行为和磨耗分布的影响,提出了一种适用于道岔区的三维非对称接触几何算法,该算法可计算车轮与曲尖轨间的真实法向间隙. 使用SIMPACK建立车辆-道岔多体动力学模型,获得仿真结果;利用考虑变截面的接触模型与英国谢菲尔大学提出的USFD磨耗模型计算曲尖轨磨耗. 研究结果表明:1) 以S1002CN车轮与12号道岔曲尖轨为例,轮对摇头角与尖轨变截面均会引起轮轨法向间隙沿接触斑纵向非对称分布,从而导致接触斑形状与应力沿接触斑纵向非对称分布;当摇头角为10 mrad,横移量为7.5 mm时,本文算法得到的接触斑面积比未考虑尖轨变截面和摇头角的简化算法所得结果大9.2%. 2) 以CRH3型车与12号曲尖轨道岔为研究对象,简化算法得到的最大磨耗深度为本文算法所得结果的0.75倍.   相似文献   

15.
为研究岔区轮轨匹配关系和经典轮轨接触理论对岔区的适用性,建立了岔区轮轨接触有限元模型,编写了数种岔区法向力及切向力计算程序. 以18号高速道岔转辙区及辙叉区典型断面为例,在法向对比了赫兹、半赫兹、Kalker三维非赫兹滚动接触理论与有限元模型在接触斑面积和接触应力上的差异,切向对比了基于赫兹和半赫兹的FASTSIM算法、Polach模型和CONTACT程序在不同工况下的蠕滑力差异. 计算结果表明:有限元模型考虑了轮轨材料应力应变特性,更接近实际运用工况,赫兹、半赫兹、Kalker三维非赫兹与有限元法接触斑面积分别最大相差50.42%、17.83%和24.78%,最大接触应力相差60.28%、25.25%和32.37%; 各工况下4种切向力模型蠕滑力随蠕滑率的变化趋势相同,同一工况下基于赫兹和半赫兹的FASTSIM算法和Polach模型与CONTACT计算结果最大相差8.08%、5.19%、9.70%; 综合岔区轮轨法向、切向计算精度和计算效率,半赫兹接触理论结合FASTSIM算法在岔区大批量的数据处理中更具优势.   相似文献   

16.
为了弥补42号高速道岔钢轨磨耗规律理论研究的不足,建立了高速道岔钢轨磨耗发展的理论预测模型. 基于Archard材料磨损理论和车辆-道岔耦合动力学仿真分析进行钢轨磨耗深度分布计算;采用了一种自适应步长算法对岔区各特征位置钢轨型面进行更新,可有效减少误差累积、改善数值模型稳定性;基于理论预测模型研究了42号高速道岔尖轨和基本轨的磨耗分布和发展规律. 研究的主要结论如下:1) 直向过岔时,轮载过渡发生于35.0~50.0 mm断面之间;在轮载过渡前磨耗发展缓慢加快,轮载过渡区段磨耗发展迅速加剧,轮载过渡完成后磨耗发展有所减缓. 2) 侧向过岔时,列车进岔后很快就开始贴靠曲尖轨运行,9.1 mm断面即出现侧磨;随着曲尖轨逐渐加宽,尖轨轨肩始终存在较严重磨耗,直基本轨虽主要承担轮载,但磨耗相对曲尖轨要小得多;轮载过渡开始后曲尖轨磨耗分布变宽,轨肩磨耗显著减小,至全断面后曲尖轨磨耗再次显著减小;曲基本轨磨耗均主要分布于轨头中部,轮载过渡前磨耗发展逐渐加快,过渡开始后磨耗发展减缓.   相似文献   

17.
高速列车轮对因定位不准会导致不同程度的初始安装偏差,在通过道岔等薄弱环节时轮轨关系急剧恶化,影响行车安全. 为研究车辆在初始安装偏角状态下通过高速道岔的动力学性能,以18号道岔为研究对象建立了具有初始偏转角的车辆-道岔耦合动力学模型,对前轮对偏转、后轮对偏转、前/后轮对同向偏转、前/后轮对反向偏转4种工况进行仿真,结合理论推导与数值仿真分析了不同偏转角对车辆入岔姿态及直逆向过岔走行性能的影响. 研究结果表明:初始偏转角向尖轨侧偏转时会导致轮轨过渡位置提前,甚至造成轮缘接触;初始安装偏角对轮轨垂向力的影响主要与偏角形式及偏转角有关,且偏转角超过一定限度时,岔区固有不平顺会进一步加剧轮轨垂向冲击;轮轨横向力主要受主接触点方向与道岔区横向冲击方向的叠加控制;前/后轮对反向偏转情况下,轮轨接触关系恶化,当偏转角为?2.0~?3.0 mrad,脱轨系数超限,影响行车安全.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号