首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
为了考虑车体的弹性振动,将车体等效成欧拉伯努利梁,建立了车体与设备垂向耦合振动模型,研究了车下设备刚性悬挂与弹性悬挂对车体振动幅频特性的影响。基于模态叠加法原理建立了考虑车体弹性振动和车下设备的高速动车组三维刚柔耦合动力学模型,分析了车下设备悬挂方式、重心偏载与弹性悬挂参数对车体振动响应的影响规律。采用欧拉伯努利梁模型的数值分析结果表明:基于动力吸振器原理,当车下设备采用合理的弹性悬挂参数时能够有效抑制车体的弹性振动,并提高车体的垂向弯曲频率。采用三维刚柔耦合动力学模型仿真结果表明:车辆运行速度越高弹性悬挂的优点越明显,车下设备横向偏载主要影响车体的横向振动特性,纵向偏载主要影响车体的垂向振动特性;当车下设备的悬挂频率接近车体的垂向弯曲频率时能够降低车体的整体振动水平,当车下设备的悬挂频率低于车体的垂向弯曲频率时,提高车下设备弹性悬挂系统的阻尼能够在一定程度上抑制车体的弹性振动。  相似文献   

2.
为了降低车体的弹性振动,分析了激发车体垂向弹性振动的振动传递路径,建立了某型高速客车车体有限元模型。利用多体动力学软件SIMPACK的接口模块FEMBS建立了铁道客车刚柔耦合系统动力学模型,研究了牵引拉杆纵向刚度对车体弹性振动的影响。考虑了牵引拉杆最基本的牵引和制动功能,使用变刚度牵引拉杆来抑制车体的弹性振动。仿真结果表明:牵引拉杆纵向刚度不会改变车体刚体振动,仅对车体弹性振动有影响;高速客车的车轮偏心导致车体产生严重的弹性振动,一般发生在车辆低速运行情况下;使用变刚度牵引拉杆可以在保证牵引和制动功能的情况下明显降低车体垂向弹性振动与纵向振动,不影响车体横向振动。  相似文献   

3.
基于弹性车体模型的高速客车动态响应   总被引:8,自引:3,他引:5  
为了在动力学仿真模型中考虑车体的弹性,使仿真计算结果更接近实际,并为车体轻量化提供理论基础,建立了基于车体弹性和刚性的高速客车非线性动力学模型,分析了车体弹性振动对运行平稳性的影响。通过该车的整车滚振试验台试验,对动态响应的仿真计算结果进行了试验验证。车辆一阶垂向弯曲自振频率对车辆心盘和车体中心测点的平稳性指标影响曲线表明:在车体中心点,两个模型的平稳性指标差异较大,客车运行速度的提高使车体弹性对车体响应的影响加大,因此对采用铝合金等轻型材料的高速客车车体,设计中必须提高车体的一阶垂向弯曲频率。  相似文献   

4.
基于约束阻尼层的高速客车车体弯曲振动的抑制   总被引:2,自引:0,他引:2  
为了降低车体的弹性振动,将车体考虑为两端自由等截面欧拉梁,建立了铁道客车刚柔耦合系统垂向动力学模型,通过幅频特性分析计算了系统各部件固有模态以及车体模态损耗因子对车体弹性振动的影响。对车体表面局部进行约束阻尼处理,通过合理假设推导了含有约束阻尼层的车体模态损耗因子的计算公式。数值分析结果表明:车体一阶弯曲自振频率接近人体振动敏感区域,为减小车体弹性振动,必须首先降低一阶弯曲振动。良好的乘坐舒适性可以通过增加车体结构的损耗因子来实现,车体局部贴附约束阻尼层可以增加车体结构阻尼。为了使车体结构获得最大的损耗因子,阻尼材料应该贴附在弯曲变形最大的位置,并且约束层和粘弹性层贴附长度和厚度有一个最佳值。只要选择合适的阻尼材料,就能获得很好的减振效果,从而达到提高高速客车乘坐舒适性的目的。  相似文献   

5.
为了减小高速动车组车体刚性与弹性振动, 提出了一种基于二系垂向作动器与车体压电作动器的高速动车组车体振动主动控制方法; 基于某型高速动车组, 设计了一种在车辆二系安装垂向作动器, 在车体底架布置压电作动器, 运用H鲁棒最优控制器进行车辆协调控制的主动减振方法; 建立了基于车辆动力学参数的刚柔耦合减振力学模型, 采用H2及H准则优化压电作动器与压电传感器布置位置, 运用鲁棒最优控制方法设计了H反馈控制器; 利用MATLAB仿真了减振装置与主动控制方法对车辆动力学性能的影响, 比较了被动悬挂车辆、仅安装二系垂向作动器车辆与采用主动控制车辆的动力学性能差异。研究结果表明: 压电作动器与压电传感器布置在距车体左端距离为7.15、12.25、17.35m处车体一阶及二阶弹性模态归一化H2及H范数最大, 可以作为压电作动器与传感器的布置位置; 基于二系垂向作动器与车体压电作动器的鲁棒最优控制方法能够有效地抑制车体的振动, 一阶垂弯振动频率处车体中部和转向架上方的加速度功率谱分别减小为被动悬挂车辆的5%、10%;速度越大, 振动加速度抑制效果越明显, 当车辆的运行速度为200km·h-1时, 车体振动加速度均方根减小10%, 当车辆的运行速度为350km·h-1时, 车体振动加速度均方根减小18%;相对于被动悬挂, 二系垂向作动器输出力功率谱在车体浮沉与点头振动频率处的量级为106 N2·Hz-1, 对车体刚性振动有较大抑制作用, 压电作动器电压功率谱在车体一阶垂弯振动频率处达到峰值4 000V2·Hz-1, 对车体弹性振动有较大抑制作用。   相似文献   

6.
车体模态频率是影响车体性能的重要动力学参数,车体模态计算和分析是设计过程中的重要内容.建立了城际动车组铝合金车体有限单元模型,用有限单元法计算了车体模态,分析了车门位置、车门高度、车门宽度、中间车门与窗口之间的距离对车体模态频率的影响.研究表明:车门位置、高度均对车体模态有较大影响,两端车门向车体两端移动可以提高车体一阶垂弯模态频率,降低中间车门高度可以明显提高车体一阶扭转模态频率.通过重新布置车门位置、修改车门尺寸及门框结构,在保证车体重量不变的情况下使车体模态频率得到了较大提高.  相似文献   

7.
车体模态频率是影响车体性能的重要动力学参数,车体模态计算和分析是设计过程中的重要内容.建立了城际动车组铝合金车体有限单元模型,用有限单元法计算了车体模态,分析了车门位置、车门高度、车门宽度、中间车门与窗口之间的距离对车体模态频率的影响.研究表明:车门位置、高度均对车体模态有较大影响,两端车门向车体两端移动可以提高车体一阶垂弯模态频率,降低中间车门高度可以明显提高车体一阶扭转模态频率.通过重新布置车门位置、修改车门尺寸及门框结构,在保证车体重量不变的情况下使车体模态频率得到了较大提高.  相似文献   

8.
基于动力学理论分析技术研究设备安装悬挂元件参数,减弱设备的振动及传递,提高车辆运行平稳性和舒适性.以采用弹性设备吊挂方式的高速动车组作为研究对象,首先应用隔振理论和动力吸振器理论,初步设计橡胶减振器的垂向刚度参数,结合车体结构振动品质给出车下橡胶减振器的优选刚度;将车体视为柔性、橡胶减振器采用优选的刚度参数进行整车刚-柔耦合动力学分析,结果表明:优选参数后的车辆运行平稳性满足标准要求;对车下设备弹性吊挂车体整备模态分析,结果表明:与刚性吊挂相比,采用设计后的弹性吊挂可使车体一阶垂弯频率提高26%,验证后安装弹性元件参数为产品设计提供理论参考.  相似文献   

9.
基于"刚度等效"原则,建立某自主研发的高速动车组车体刚结构有限元模型,车体一阶垂向弯曲和一阶扭转的振动频率的数值解与模态试验值的误差分别为2.75%和7.90%;在此基础上,以整备状态车体有限元模型重心与实际重心一致为质量分布原则,创建五种整备状态车体模态分析模型.模态分析结果表明:与实际重心最接近的模型5的计算结果与试验结果最为接近,误差分别为0.03%和6.85%;建议车体方案设计阶段采用模型2的建模方法估算整备状态车体模态.  相似文献   

10.
为解决难以利用能量解耦法设计柔性双层隔振系统的问题,提出一种能够表示柔性设备和中间质量弹性模态特点的多自由度模型;基于该模型,提出采用广义弹性力对柔性隔振系统进行解耦的方法,并推广到柔性结构中;以某内燃动车动力总成双层隔振系统为例,基于所提方法探讨了构架弹性模态下刚体振动与弹性振动的耦合情况;最后通过振动实验台验证了该方法的有效性.研究结果表明:机组一级隔振系统垂向频率从12 Hz降低到8 Hz后,系统所有模态频率均得到不同幅度的下降,前两阶刚体振动模态频率下降最明显,分别下降50.00%和49.98%;构架弹性模态频率比机组弹性模态频率更低,影响更大,构架弹性模态频率下降8.32%,机组弹性模态频率下降0.80%;在构架弹性振动模态振动中,构架弹性振动能量所占比例提高14.88%,刚体振动能量所占比例降低90.64%,降低一级隔振系统垂向频率能够提高振动解耦效果,减少振动传递.  相似文献   

11.
为了对地铁车辆的运行性能实现更准确的评估和更有效的优化,借助有限元理论和子结构理论建立了车体和转向架构架等关键零部件的柔性动力学模型;基于天棚半主动控制算法和柔性多体动力学理论,建立了考虑半主动控制悬挂的地铁车辆刚柔耦合动力学模型;考虑轨道随机不平顺的影响,研究了半主动控制悬挂以及结构柔性对地铁车辆运行稳定性和乘坐舒适性的影响。研究结果表明:相对于传统的悬挂装置,天棚半主动控制极大降低了车辆的振动加速度,并使其变化趋势更加平缓,对车辆的低频振动有明显的抑制作用;采用本文的研究参数,天棚半主动控制在直线段可使车辆的垂向Sperling指标和垂向振动加速度均方根(RMS)分别降低26.8%和7.5%,使车体横向Sperling指标和横向振动加速度RMS分别降低8.8%和4.9%,而在曲线段,天棚半主动控制可使车辆垂向Sperling指标和垂向振动加速度RMS分别降低25.1%和5.7%,使横向Sperling指标和横向振动加速度RMS分别降低15.6%和8.3%,车辆的乘坐舒适性和运行稳定性大幅提升;考虑结构柔性时,车辆的垂向Sperling指标和垂向振动加速度RMS相比于未考虑结构柔性时分别增大了4.3%和6.8%,横向Sperling指标和横向振动加速度RMS分别增大了3.0%和3.4%。可见,车体和构架的结构柔性对车辆的动态特性有较大影响,在对车辆运行稳定性和乘坐舒适性进行计算和评估时不可忽略。   相似文献   

12.
车辆能量回馈式主动悬架μ综合控制   总被引:1,自引:0,他引:1  
为了改善车辆能量回馈式主动悬架系统的稳定性、减振性及能量回馈性能, 建立了含参数摄动的1/4车体能量回馈式主动悬架模型并进行动力学分析, 基于μ综合方法设计了该系统的鲁棒控制器. 为验证其控制效果, 利用MATLAB/SIMULINK进行了仿真. 结果表明, 在参数摄动和路面不平顺输入的干扰下, 基于μ综合控制的车辆能量回馈式主动悬架鲁棒稳定, 闭环系统的结构奇异值峰值为0.580 9, 在给定频段内能更好地抑制车体振动,在固有频率下车体垂直振动加速度增益降低了9 dB.   相似文献   

13.
侧风下高速列车车体与轮对的运行姿态   总被引:3,自引:0,他引:3  
应用流体动力学理论,建立了高速列车空气动力学模型,计算了作用于高速列车车体上的气动力和气动力矩;应用多体动力学理论,建立了车辆系统动力学模型,分析了在不同风向角、侧偏角与合成风速下高速列车头车车体和轮对的运行姿态。计算结果表明:在不同侧风环境下,头车车体始终向背风侧横摆和侧滚;当风向角为90°时,车体的横向位移和侧滚角最大;当列车车速为350 km.h-1,侧风风速分别为13.8、32.6 m.s-1时,列车头车车体最大横向位移分别为74.2、171.7 mm,最大侧滚角分别为3.1°和8.4°;当列车车速为200 km.h-1,风速不小于32.6 m.s-1,且风向角为90°时,列车头车一、二位轮对均向背风侧横移,背风侧车轮易发生爬轨现象,三、四位轮对均向迎风侧横移,三位轮对迎风侧车轮易发生爬轨现象;四位轮对的横移量和摇头角均小于前三位轮对,相对安全。  相似文献   

14.
为改善高速列车运行舒适度和车下悬挂设备的振动水平,建立了车辆-设备系统垂向动力学模型,推导了车辆系统振动加速度频率响应函数;结合轨道不平顺激励谱函数计算了车下悬挂设备振动加速度均方根,联合人体舒适度加权滤波函数计算了车体振动参考点的垂向舒适度指标;引入目标级联分析(ATC)法逐层分解车辆-设备系统振动指标,构建了车辆-设备系统两层指标分解数学模型,采用指数罚函数策略协调两层振动指标之间的耦合问题;提出了以车辆运行舒适度和车下悬挂设备振动加速度为指标的多目标优化方法,建立了以车下设备悬挂刚度和阻尼为设计变量的优化模型;联合车下设备悬挂参数动力吸振器(DVA)设计法对比探讨了ATC法在复杂车辆系统参数优化设计中的应用效果。分析结果表明:与DVA设计法相比,ATC法优化后车辆中部舒适度在300 km·h-1工况下提高了8.5%,设备振动水平减小了约20%;在全速域区间,ATC法对车体中部的振动衰减是DVA设计法的2倍,且对设备的振动衰减比DVA设计法大4.5 dB;与优化前相比,ATC法优化后车辆中部舒适度指标最大提升了15%,设备振动加速度减小了0.18 m·s-2。由此可见,ATC法可以运用于复杂轨道车辆结构参数优化设计中,能有效改善车辆系统的振动水平,也可为车下设备悬挂参数优化设计提供指导。   相似文献   

15.
建立了一种适用于1 435/1 000 mm轨距变换、电机体悬的高速动车组变轨距转向架动车的动力学模型;重点计算在2种轨距线路上动车采用不同的轮轨匹配关系、不同磨耗状态下的运行稳定性分岔特性,并计算了轨距、轮轨游间对运行稳定性的影响;计算了车辆运行垂向和横向平稳性以及在不同曲线工况条件下车辆的曲线通过性能,结合相关动力学标准对各项动力学性能指标进行了评定,并对造成各项动力学指标差异的原因进行了简要分析;以电机体悬式变轨距转向架动车的12个悬挂参数为因子,以车辆蛇行失稳速度、轮轴横向力、轮轨垂向力、轮重减载率和脱轨系数5个动力学指标为响应,采用最优拉丁超立方设计方法进行试验设计;建立径向基神经网络代理模型,采用NSGA-Ⅱ多目标遗传算法对动车主要的悬挂参数进行多目标优化。计算结果表明:在设计工况条件下,所设计的高速动车组变轨距转向架动车在2种轨距线路上运行稳定性、平稳性和曲线通过性能均能满足设计要求;在1 000 mm轨距上运行的稳定性优于1 435 mm轨距情况,但运行平稳性和曲线通过性能劣于1 435 mm轨距情况;优化后的悬挂参数可以兼顾车辆的运行稳定性、平稳性和曲线通过性能,使车辆具有更好的动力学性能,在2种轨距线路运行上所有计算性能指标均满足相关标准。   相似文献   

16.
针对时速400km高速检测列车,建立了刚柔耦合的车辆非线性系统动力学模型,探讨了车下弹性悬挂系统的振动特性.通过仿真和理论分析,研究了检测列车整备状态车体结构模态参数与车下悬挂设备模态参数间的匹配关系,给出整备状态车体与车下有源设备最佳模态参数匹配原则,确定了车体与车下设备悬挂件最佳匹配参数.研究结果表明:该方法可以根据车下悬挂系统的动态响应,有效确定时速400km高速检测列车的最佳车下悬挂方案.  相似文献   

17.
为研究桥梁柔性对中低速磁浮车辆在曲线半径为70.0 m的平曲线上运行时的动态响应影响,对通过柔性桥梁和刚性轨道时的车辆动态响应开展了对比分析. 首先,建立了122个自由度的车辆空间动力学模型,模型中考虑了具有主动悬浮与被动导向特性的二维磁轨关系;其次,利用三维铁木辛柯梁参数化建模方法,建立了由柔性桥梁组成的平曲线有限元模型;最后,通过悬浮力的联系形成了车辆-曲线桥梁系统刚柔耦合动力学模型. 研究结果表明:17.0 m跨径的圆曲线桥梁的自振特性和动位移响应满足相关标准要求;与车辆通过刚性轨道相比,柔性桥梁作用下的车辆系统动态响应更为剧烈,这种差异在车辆系统的横向动态响应上体现明显,而悬浮间隙和车体垂向加速度的响应差异较小,考虑刚性轨道时将高估车辆的曲线通过能力;柔性桥梁和刚性轨道两种模型计算得到的电磁铁最大横向位移不超过6.0 mm,悬浮间隙可在额定值的 ± 4.0 mm内波动,表明在开展对比计算的工况下车辆具有良好的曲线通过性能.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号