首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 315 毫秒
1.
针对白车身在电泳槽中运行过程的实际情况,建立了三维计算模型.基于日本CRADLE公司的SC/Tetra软件,利用八叉树方法对含有白车身的电泳槽模型进行了网格划分,应用k-ε标准湍流计算模型和SIMPLE算法对电泳槽中白车身外流场进行流场模拟分析.文中采用静网格模型和动网格模型两种不同方法对流场进行了模拟计算并对计算结果进行了对比.计算表明,两种方法所得结果相对误差小于4.96%,说明计算结果可靠.计算得到汽车白车身在电泳槽水平运行时阻力值约为17.89 N,横向力值约为1.85N,升力值约为522.36 N,计算结果为电泳生产线中遇到的脱钩、车身倾斜和车身颠覆等问题的解决提供了参考数据.  相似文献   

2.
熊君 《湖南交通科技》2013,(4):51-54,136
为研究斜支承弯梁桥的力学特性,利用ANSYS软件建立斜支承单跨弯梁模型,分析斜支承单跨弯梁在弯扭刚度比、斜度、荷载类型、荷载作用位置等作用下对其受力性能的影响.并绘出了各影响因素下的大量曲线图表,并得到了一些结论.  相似文献   

3.
利用Ansys计算了简支斜板桥不同斜度时的自振频率,分析了基频系数和前5阶频率随斜度的变化.用薄板单元模拟简支斜板桥,用移动质量模型模拟车辆,建立了车-桥耦合振动分析方法,分别考察了斜度、车辆速度及车辆行驶方式对斜板桥挠度和弯矩冲击系数的影响,得出了斜板桥冲击系数随斜度、车辆速度及车辆行驶方式的变化规律,得到了基频随斜度的增大而增大、冲击系数与车辆速度没有单调递增或递减规律及不同截面位置的挠度和弯矩冲击系数不同等结论.  相似文献   

4.
采用计算流体力学方法对喷水推进器水力性能进行了预报,以判别制造过程尺寸超差对喷水推进器水动力性能的影响.建立由喷水推进器内流场与船体外流场构成的计算区域,用6面体结构化网格划分泵内流场,采用4面体网格对进水管道和船底区域进行划分.对整个喷水推进系统的三维粘性湍流流场进行了数值计算.计算结果既可用于分析喷水推进器内部流场的流动细节,也可用于推力、功率、效率等外特性参数的预报.  相似文献   

5.
通过对斜梁桥空间三维有限元分析,讨论了斜度和正交中横梁数目、厚度对斜梁桥受力性能的影响,计算出了正交中横梁数目的合理值,得出了有关斜梁桥合理横向刚度的结论,据此提出了相关工程设计建议.  相似文献   

6.
针对某型大学生方程式(FSC)赛车的整车绕流场展开计算流体力学(CFD)分析与优化。利用三维建模软件CATIA对车身、车架、发动机总成、车轮及舱内模型进行建模、装配并生成风洞分析模型。采用集成于ANSYS Workbench环境下的流体分析软件CFX对此模型进行仿真分析,着重分析了赛车在正面风向状态下的受力情况及气流流态。仿真计算结果显示,原型车风阻较大,多处流场存在明显的紊流,影响了气动性能及赛车的速度性;气动升力及纵倾力矩偏大,影响赛车的驾驶稳定性。根据原型车的仿真结果,对车身及其他部件的优化改进提出几种策略,通过CFX仿真计算得出其优化效果。在对各项策略的优化效果进行详细分析后,通过选择优化效果好的策略、剔除无作用甚至反作用的策略以及多策略组合的办法,完成对原型车的优化设计。优化后赛车的气动性能得到提升,整车的气动阻力、气动升力及纵倾力矩均得到改善。  相似文献   

7.
为研究量纲为1的参数y+值对车辆气动参数计算精度的影响, 以阶梯背MIRA模型为基础, 在保证模型网格数量与质量相近的情况下调整近壁网格尺寸, 构建不同y+值的流场仿真模型; 考虑到不同的湍流模型对车辆外流场仿真的y+值具有不同的适用范围, 选取SST κ-ω和LES两种常用的湍流模型对阶梯背MIRA模型外流场进行稳态和非稳态仿真分析; 将气动参数仿真结果与试验结果进行对比分析, 得出合适的y+值取值范围; 结合仿真速度云图和车身表面受力曲线分析了边界层首层网格厚度对仿真精度的影响; 建立了方背MIRA模型在2种湍流模型下的外流场仿真模型, 进行不同流速下气动参数的计算, 从而对y+值取值范围进行验证。研究结果表明: 针对车辆外流场数值仿真, 采用SST κ-ω模型时对应的合适平均y+值取值范围为20~50, 而采用LES模型时对应的合适平均y+值取值范围为5~10;当边界层首层近壁网格厚度过大时, 数值仿真无法准确捕捉边界层中速度梯度的变化, 造成边界层流场流动信息丢失, 而当边界层首层近壁网格厚度过小时, 边界层网格会严重畸变, 2种情况下气动参数计算误差都超过5%, 从而影响车辆外流场数值仿真精度; 根据所获得的y+值取值范围, 方背MIRA模型计算的气动参数误差小于5%, 说明了2种湍流模型平均y+值取值范围的正确性。   相似文献   

8.
为评价计算网格对明线列车空气动力学数值仿真计算结果的影响,基于计算流体力学,研究了计算网格对列车气动特性的不确定性. 首先根据3种不同尺寸的计算网格及其计算结果,提出了计算网格对列车气动力和表面压力不确定性的计算方法;其次以ICE2列车为研究对象,划分了3种不同尺寸的计算网格,数值仿真得到了列车气动力和典型截面的压力;最后研究了该列车头车气动力和典型截面压力的不确定性. 研究结果表明:数值仿真得到的气动侧力系数与试验数据的误差仅为0.31%;车身迎风侧表面压力的不确定性接近于0;车身表面压力不确定性较大的位置主要位于车体底部,其最大不确定度达到1.42;头车侧力系数的不确定度为0.002 6,而头车升力系数的不确定度为0.509 3.   相似文献   

9.
船舶与土木工程系邹早建教授主持的科研项目“操纵运动船体三维粘性流场及水动力计算”,得到教育部资助. 项目简介如下. 1. 研究目标、研究内容和拟解决的关键问题 项目研究的目标是通过对操纵运动船舶三维粘性流场及水动力数值计算方法的研究,开发出一套操纵运动船舶三维粘性流场及水动力计算的计算机软件.研究内容包括:采用RANSE对作操纵运动船舶的粘性流动进行数值计算,以便精确地预报定常斜航和定常回转情况下的复杂流动现象,如三维流动分离和分离涡,精确地预报操纵运动船舶的水动力;开发出操纵运动船舶粘性水动力计算的CFD程序,并对CFD计算的不确定性和有效性进行分析. 项目拟解决的关键问题主要有四方面,首先是如何生成高质量的计算网格问题;第二是湍流模式的选择与应用问题;第三是如何在计算中计及自由面兴波影响;最后是数值特性分析与计算结果的可视化问题. 2. 项目特色与创新之处 项目属于应用基础研究,其创新之处体现在如下几方面:研究网格拓朴结构、网格-类型与数值结果的依赖关系;复杂几何结构(如船体、附体)分区结构网格生成;湍流模式的选择与应用;三维RANSE的离散求解和粘性数值方法特性分析等. 科技处(余区办)章爱武  相似文献   

10.
采用理论计算与试验验证相结合的方式对列车风区运行气动性能进行了研究.首先利用主流CFD分析计算方法,对挡风设施条件下的高速列车施加运行速度和横风风速以建立空气动力学仿真模型,对模型进行计算得到不同工况下列车的流场情况.其次,通过实车试验,实时获取列车风区运行时空气动力学性能(两侧压差)数据,以此分析列车在不同的线路条件和横风风速下两侧压差的变化规律.通过分析得出,列车在风区运行通过挡风设施过渡段时两侧压差发生突变,且伴随列车晃车现象影响行车安全.通过对多处过渡段区域重复试验和分析列车车体横向加速度变化情况,得出风区过渡段是列车运行薄弱环节的结论.实验数据对比了列车在过渡段工程补强前后的两侧压差情况,结论为进行工程补强后,两侧压差可减小30%~80%,其中最大减小为84.89%,工程补强效果可以明显的减小过渡段区域强风对列车的影响.  相似文献   

11.
基于粘性流体力学理论,按三维可压缩粘性流对具有流线型头部形状的TR08列车以及通过变化流线型头部纵剖面高度或流线型头部长度设计出的4种新头型列车的周围流场进行了数值模拟。为评估不同流线型头部外形的气动阻力性能,定义了表示其形状特征的整体长细比作为评估依据,综合考虑了流线型头部水平投影形状和纵向对称面投影形状对气动阻力性能的影响。通过对5种不同头型列车的模拟结果进行对比分析,得出了流线型头部外形对气动阻力性能影响的规律:随着流线型头部长度增加,气动阻力降低,而中间车阻力变化不大;在头部流线型长度相当的情况下,纵剖面轮廓线上凸的头车气动阻力比下凹的小,而尾车气动阻力大。计算得到的不同流线型列车的整体长细比大小排序与其气动阻力系数排序完全一致。分析结果表明,增加流线型头部长度是减小气动阻力的有效途径;整体长细比能较好地反映流线型头部对列车气动阻力性能的影响。  相似文献   

12.
中国高速列车气动减阻优化综述   总被引:3,自引:3,他引:0       下载免费PDF全文
研究了中国高速列车气动减阻优化进展,总结了典型部件的压力分布特性与各部件在列车气动阻力中的贡献占比,评析了惰行试验、风洞试验与数值模拟3种列车气动阻力研究方法,论述了和谐号、复兴号等系列列车头型气动性能的差异,阐述了高速列车头型气动减阻优化方法与技术,梳理了转向架区域、车端连接处、受电弓及导流罩等局部不平顺区域的气动减阻措施,归纳了适用于高速列车的前沿减阻技术。研究结果表明:数值模拟和风洞试验各有优缺点,经过风洞试验有效验证的数值模拟是准确计算列车气动阻力的有效途径; 列车气动阻力中贡献占比的主要部件为头车、尾车、转向架、受电弓与车端连接处; 由于现有高速列车的高度流线化,头型优化较难实现大幅度的减阻,改善转向架区域裙板、设计全包外风挡与优化受电弓和导流罩外形是进一步减阻的有效措施; 减阻降噪、提升运行平稳性和舒适性等多目标优化是列车头型设计的发展趋势,通过直接寻优计算或者代理模型寻优计算能够提高优化效率与降低优化设计成本; 未来应重点研究高速列车的仿生表面微结构、吹吸气流动控制、等离子体减阻与涡流发生器减阻技术,实现中国高速列车的绿色、节能、高速化发展。   相似文献   

13.
以国产CRH3型3节车编组高速列车为研究对象,利用计算流体力学软件Star-CD/CCM+计算了在不同横风风速和不同车速下的列车气动力荷载;将该荷载导入动力学仿真软件SIM-PACK的列车运行动力学模型中,计算出在不同横风和车速条件下的脱轨系数、减载率和倾覆系数等运行稳定性参数.计算表明:头车的气动性能和运行稳定性受横风的影响最大;根据车辆动力学性能参数确定的列车安全速度限值与横风风速之间并非线性关系.参照有关高速列车运行稳定性评定标准,给出了不同横风风速下高速列车安全运行的速度限值.  相似文献   

14.
根据近年来高速列车气动噪声相关研究,从试验研究、理论分析和数值模拟方面介绍了当前高速列车气动噪声研究现状和研究成果, 分析了高速列车气动噪声源分布和产生机理,探讨了高速列车关键区域气动噪声降噪措施,展望了未来研究方向。研究结果表明:高速列车运行产生的气动噪声主要声源为几何体表面偶极子声源,分布在转向架、受电弓、车厢连接处、头车与尾车等区域;转向架区域存在着车体表面结构不连续性,气流流经时产生流动分离和流体相互作用,形成较强气动噪声源,可以采用转向架舱外设置裙板和舱内壁与周围铺设吸声板等措施进行降噪;受电弓各部件受到流动冲击作用,产生周期性涡旋脱落诱发的单音噪声,可通过减少受电弓结构部件、改变受电弓杆件截面形状、安装受电弓导流罩、受电弓两侧设置隔声板和射流控制等措施进行气动噪声有效控制;无封闭式车厢风挡形成开放式环形空腔,气流流经时产生较强的气动噪声和气动声学耦合,采用全封闭风挡可有效降低气动噪声产生;头车部位气流流动分离以及尾车部位由于尾涡脱落和非定常流动结构形成与发展,诱发气动噪声产生,头车、车身与尾车减少突出部件,保持几何体表面光滑和连续性,有利于取得较好的降噪效果;随着未来更高速度级高速列车研发,有必要进一步深入研究高速列车气动噪声理论与数值模拟方法,提升气动噪声降噪技术水平,有效控制气动噪声。   相似文献   

15.
基于不同外形参数模型的汽车外流场仿真   总被引:1,自引:0,他引:1  
运用三维建模软件建立某型汽车的CAD模型,并基于知识工程模块设置一组影响汽车空气动力学的参数:前风窗角(FWW)、后风窗角(BWW)、接近角(AFA)、离去角(DRA),通过改变这些参数得到8种不同的汽车模型;将得到的参数化模型运用计算流体力学(CFD)软件Star - ccm+对其进行空气动力学模拟分析,模拟出不同参...  相似文献   

16.
为研究强降雨对高速列车空气动力学性能的影响, 利用Euler-Lagrange方法建立了强降雨环境下高速列车空气动力学计算模型; 空气建模为连续相, 采用Euler方法描述, 雨滴建模为离散相, 采用Lagrange方法描述, 并采用相间耦合方法对降雨环境进行模拟; 分别开展列车气动性能计算及雨滴降落仿真, 并与试验数据进行对比, 验证计算方法的准确性; 数值仿真了强降雨环境下高速列车的流场结构和气动特性。计算结果表明: 随着降雨强度的增加, 在雨滴的冲击作用下, 流线型头型前端区域的正压逐渐增大, 流线型头型后端区域的负压逐渐减小, 从而导致头车气动阻力增大; 降雨强度对高速列车头车气动阻力系数的影响较为显著, 而对气动升力系数的影响较小; 与无降雨环境相比, 当降雨强度为100~500 mm·h-1时, 200 km·h-1车速下的气动阻力系数增加0.004 0~0.020 4, 气动阻力增加85~432 N, 增大率为2.64%~13.46%;300 km·h-1车速下的气动阻力系数增加0.002 7~0.013 7, 气动阻力增加129~652 N, 增大率为1.78%~9.05%;400 km·h-1车速下的气动阻力系数增加0.002 3~0.009 8, 气动阻力增加195~829 N, 增大率为1.52%~6.49%, 因此, 不同车速下, 气动阻力系数随着降雨强度的增加而增大, 且与降雨强度近似呈线性关系; 当车速为300 km·h-1, 降雨强度为100 mm·h-1, 雨滴粒径由2 mm增加为4 mm时, 气动阻力系数由0.152 0增大到0.154 9, 气动阻力增加138 N, 增大率为1.91%, 因此, 高速列车气动阻力系数随着雨滴粒径的增加而增大, 且与雨滴粒径近似呈线性关系。   相似文献   

17.
横风对高速动车曲线通过性能的影响   总被引:8,自引:1,他引:8  
通过横风对电动车组气动特性影响的试验研究,得到了高速动车受横风作用时所受的气动升力、侧力和侧翻力矩,并利用动力学分析软件SIMPACK分析高速动车在横风工况下的曲线通过性能.分析结果表明,侧向风力引起的车轮减载是影响动车安全运行的重要因素.在所研究的工况下,动车在常值侧风下通过曲线的速度不应超过220km/h,在阵风下以100km/h的速度通过曲线仍然不能满足安全指标.  相似文献   

18.
为研究地面边界条件对汽车外流场数值模拟的影响,制定了两种方案对某微型车进行数值模拟计算,并对结果进行分析.研究表明:不同的地面边界条件对汽车的底部流场有很大的影响,而对上部流场影响不大;不同的地面边界条件对汽车的气动升力和前轮的升力影响很大,对气动阻力和后轮升力影响较小;在汽车的外流场数值模拟中,采用移动地面条件可以提高数值模拟的精度.  相似文献   

19.
为提高明线运行的高速列车气动性能,以头车气动阻力和尾车气动升力为优化目标,对高速列车头型进行了多目标自动优化设计.以某新型高速列车为原型,建立了包含转向架区域的高速列车参数化模型,提取了7个设计变量,分别控制鼻尖高度、端盖开闭机构顶端高度、驾驶室车窗高度、水平最大外轮廓线横向宽度、头型中部辅助控制线凹凸度、转向架区域横向宽度和隔墙倾角,并基于计算流体动力学理论,建立了高速列车空气动力学模型.应用该模型计算作用在列车上的气动力,通过多目标遗传算法自动更新设计变量,实现了高速列车头型的自动优化设计.对优化目标与设计变量的相关性进行分析,结果表明:驾驶室车窗高度和转向架区域横向宽度对头车阻力影响最大,头型鼻尖高度和中部辅助控制线凹凸度对尾车升力影响最大;优化后得到6个Pareto最优头型,与优化前的头型相比,头车阻力最多减小3.15%,尾车升力最多减小17.05%.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号