首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
以杭州地铁 9 号线一期工程下穿沪杭铁路框架桥为背景, 建立盾构下穿施工三维数值模型, 分析软弱地层环境下地铁盾构隧道下穿施工对铁路框架桥的影响, 提出多种确保铁路安全运营应对措施, 并在施工过程中进行现场监测。 数值分析表明, 盾构隧道下穿施工中铁路框架桥最大沉降量为 6. 72mm, 进行洞内注浆加固后, 最大沉降量降为 4. 76mm, 说明在软弱地层环境下及时进行洞内注浆对抑制铁路框架桥的沉降变形具有显著效果; 监测结果表明, 盾构右线施工对框架桥沉降变形的影响大于左线, 铁路框架桥最大沉降达到 6. 9mm, 采取应对措施及时进行洞内二次注浆, 可有效控制框架桥的持续沉降变形, 铁路框架桥处于安全可控状态。  相似文献   

2.
确保盾构区间隧道在下穿施工过程中能够有效地保护既有结构物的安全,是目前地铁隧道下穿施工亟待解决的主要问题之一。以实际工程项目为基础,通过有限元软件GTS-NX构建三维实体模型,基于实际施工情况前提下,将盾构隧道下穿既有普铁路基作为分析对象,通过数值模拟分析法分析其变形规律,并对施工过程中路基的沉降规律进行观察。为后续施工期间采取科学合理的安全措施提供指导,同时也为类似的相关工程开展提供参考。  相似文献   

3.
以国内某盾构隧道下穿既有构筑物为工程依托,运用有限元分析软件Plaxis模拟盾构隧道开挖的全过程.对施工所引起的沉降进行数值模拟分析。研究结果表明:隧道下穿住宅楼时,桩基础会产生较大的不均匀沉降;隧道下穿锅炉房时,左右线开挖后引起的基础沉降都超出了可控范围;隧道在先后下穿住宅楼和锅炉房的施工过程中都存在较大风险。通过研究提出了盾构施工期间技术措施,有效地控制构筑物沉降,以达到相关安全性要求。  相似文献   

4.
为研究盾构下穿既有盾构隧道时施工参数的合理取值,以北京南水北调东干渠工程盾构隧道穿越既有地铁盾构隧道施工为依托,通过对既有隧道沉降的数值模拟和现场监测数据、盾构施工参数的分析,讨论了既有左右线隧道沉降存在差异的原因,总结了控制沉降的施工参数经验,阐述了既有隧道受穿越施工扰动的沉降规律,提出并验证了盾构隧道病害整治的方法.研究结果表明:受盾构施工参数的影响,既有左线隧道沉降23.9 mm,而右线仅沉降4.8 mm,沉降差异明显,但规律基本一致;盾构施工时,土仓压力调整级差不宜大于0.005 MPa,严格控制同步注浆压力在0.50 MPa,二次补浆压力在0.20~0.35 MPa,曲线段适当减缓掘进速度;已投入运营的地铁维修作业时间短,宜通过化学注浆治理管片接缝和螺栓孔处的渗漏水,压力注胶充填树脂治理道床裂缝.   相似文献   

5.
为了控制盾构近接施工区既有建筑物的沉降变形,以福州地铁某线下穿文化街区的隧道盾构施工为例,采取全过程分阶段风险控制措施,并建立其隧道盾构的数值仿真模型,分析盾构施工对建筑物和地表沉降的影响。模拟结果表明:盾构下穿建筑物的最大沉降为4.9 mm,地表最大沉降为5.5 mm,均满足规范要求。同时将数值模拟结果和现场监测结果进行比对,验证了数值模拟的可靠性。研究结果可为类似隧道盾构下穿既有建筑物的风险管理和控制提供参考。  相似文献   

6.
地铁盾构隧道施工对邻近管线的影响分析   总被引:1,自引:0,他引:1  
为了获得地铁隧道盾构法施工对临近地下管线的变形和应力的影响规律,以大连地铁二号线某区间隧道工程为背景,利用FLAC3D软件对隧道盾构施工引发的地层变形所导致的管线变形、应力进行了精细模拟,得到双线隧道施工完成后横向地表沉降槽不符合叠加理论,存在少量差值,双线隧道贯通时最大沉降值为11.26 mm,盾构隧道地层体积损失率为1.46%,地表沉降槽宽度系数为0.81.按两条隧道互不影响沉降叠加,最大沉降值为11.93 mm;右线隧道贯通时,燃气管最大沉降值为10.1 mm,左线隧道贯通时,燃气管最大沉降值为11.4 mm,最大沉降位置向左有少量偏移.随着右线盾构掘进施工,污水管道沉降逐渐增大,最大沉降变形为5.45 mm,线隧道贯通后,污水管线最大沉降值为9.79 mm.整个过程两管均处于安全状态.  相似文献   

7.
沈阳地铁某车站出入口下穿浑南大道,既有有轨电车5号线沿浑南大道路中敷设,出入口下穿浑南大道及有轨电车段采用暗挖法施工,暗挖出入口结构顶部主要位于粉细沙及杂填土层中,地质条件较差,有轨电车对沉降要求较严格,本工程采用前进式注浆大管棚+小导管超前加固,CRD工法开挖,确保工程施工安全,根据有限元计算,有轨电车最大沉降量约7.2mm,实际施工完成有轨电车最大沉降量约9.2mm。  相似文献   

8.
广州地铁十四号线邓江区间从始发井出发,下穿街北高速公路匝道、路基及其街口收费站,同时在轨道右线右侧上方有街北高速的涵洞与其并行。为确保盾构施工时街北高速及其周边建构筑物的安全性,文章结合盾构隧道掘进的的主要特点,建立了能全面反映盾构隧道掘进全过程的三维模拟方法,分析盾构始发井及左右洞施工过程对街北高速路面及周边建构筑物的变位影响过程。同时,根据盾构隧道数值模拟研究成果,确定盾构施工影响的沉降控制措施,经模拟分析得知,盾构施工过程对街北高速路面影响均在控制范围以内,合理的盾构施工能够确保路面及周边建筑物安全。  相似文献   

9.
以某地铁线机场延伸线盾构隧道下穿某机场停机坪为工程背景,通过二维数值模拟盾构施工过程,对地表沉降槽曲线特性进行了研究,同时计算了不同注浆压力值与地表最大沉降量的的关系。计算结果表明:单线开挖结束后,横断面的地表沉降近似呈现V型的正态分布曲线,盾构下穿对地表沉降的影响范围约为洞径的5倍,双线开挖结束后,地表沉降槽沿横断面方向近似呈现U型,注浆压力与地表沉降近似成反比关系。  相似文献   

10.
为研究隧道近距离下穿施工对既有隧道沉降、衬砌应力和地表沉降扰动机理,以某下穿隧道工程为例,基于FLAC 3D有限差分软件建立隧道施工下穿既有隧道三维数值模型,分析隧道施工过程引起既有线沉降及衬砌应力变化规律。分析结果表明,隧道开挖过程中,地表最大沉降为3.8 mm,既有线隧道最大沉降为7.75 mm,位于靠近施工线路一侧拱腰处,且拱顶最大沉降为5.38 mm;未开挖前既有线衬砌最大应力7.798×105Pa,隧道贯通后,衬砌最大应力为1.124×106Pa,增幅达44%。研究结果为保证施工安全及优化施工控制措施具有重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号