首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为了探究重载铁路水泥改良膨胀土路基填料的工程特性及路用性能,采用室内动三轴试验、微观结构试验、路基原位动力试验相结合的方法,揭示了膨胀土掺入水泥3%~5%改良前后静态指标与动态指标的变化特征,分析了水泥掺量5%和3%改良膨胀土分别用作重载铁路基床底层及以下路堤填料建设期的工作性能,评估了服役期列车动载作用下路基的动力稳定性. 研究结果表明:膨胀土掺入3%~5%水泥改良后,强度提高同时胀缩性显著降低,水稳定性提高3~4倍;相比重塑素膨胀土,水泥掺量3%~5%改良膨胀土临界动应力提高5~6倍;检测路基压密程度与强度指标满足规范且有较大富裕,监测路基中线地基沉降在铺轨前处于稳定状态;原位动力测试表明列车动载作用下路基的动应力沿深度逐渐衰减,在基床表层与基床底层范围内最大衰减量分别可达40%和80%以上,动应力影响深度是基床设计厚度的1.4~1.8倍,动应力影响深度范围内路基的动应力值远小于同位置填料的临界动应力,运营期路基动力稳定性满足安全服役要求. 研究成果能够为重载铁路水泥改良膨胀土路基精细化建设养修提供理论参考.   相似文献   

2.
建立三维有限元CRTSⅢ型板式无砟轨道-路基-天然地基土非线性数值分析模型,基于轨道随机不平顺条件下计算得到轮轨载荷,通过有限元软件二次开发子程序将轮轨载荷导入有限元模型,路基两端及天然地基土体四周采用等效三维一致粘弹性人工边界模拟工程实际半无限空间体,在此基础上研究分析高速移动荷载作用下路基的动位移分布规律。研究结果表明:文章采用的有限元模型计算得到的路基竖向动位移远小于我国现行高速铁路标准的控制值3.5 mm,满足要求;列车模型为两节动车,中间两组轮对移动产生的动位移叠加,竖向动位移在各结构层中的时程曲线峰值与转向架数目进行对应;沿横向分布,在混凝土底座范围内,路基各结构层竖向动位移幅值沿横向分布变化较小,各结构层横向最大差值仅为0.129 mm;在混凝土底座范围外,路基各结构层竖向动位移幅值横向分布差异较大,横向最大差值均超过0.5 mm;随着深度的增加,竖向动位移在路基中随着深度的增加逐渐衰减,最大值位于基床表层顶面,近似线性衰减;基床表层刚度的变化对系统动力响应影响作用较有限,基床底层刚度的增大对降低路基中的动位移影响作用较显著,有利于行车运行的平稳、舒适及安全,提高列车时速会加大路基的变形位移,地基土刚度的变化对路基中对降低系统动位移的作用最显著。  相似文献   

3.
为探讨列车轴重和运行速度对土质路基动力特性的影响,用ANSYS与FLAC3D软件对有砟轨道-路基系统进行了三维动力数值模拟,在模拟过程中,利用滞后阻尼实现了土体在循环动荷载下的非线性特性.用该方法对达成线循环加载试验段的路基进行建模计算,所得路基动应力与现场实测数据有很好的一致性.在荷载振动频率与客车运行速度的转换过程中,取相邻车厢两个转向架的间距为相邻两个动应力波峰之间的距离,在此基础上,探讨了客车运行速度对土质路基动力性质的影响.研究表明:列车轴重和运行速度对路基表面动应力影响较大,随着轴重的增加和速度的提高,路基表面动应力呈马鞍形分布的趋势愈加明显;动应力沿路基深度的衰减规律受车速的影响很小,不同车速下的动应力在基床表层内都衰减了42%~46%,再经过基床底层的扩散,衰减值达79%~82%.   相似文献   

4.
列车速度对无碴轨道路基动力特性的影响   总被引:2,自引:0,他引:2  
为了分析列车速度对无碴轨道路基动力影响,采用层状体系理论,结合有限元方法,建立无碴轨道路基层状有限元模型,考虑了列车荷载的不同速度对基床表层振动加速度、竖向动位移、动应力及其横向分布等路基动力特性的影响,研究了无碴轨道路基荷载作用下的力学行为。结果表明:列车速度对基床表层加速度的影响较大,竖向加速度随荷载速度的提高而增大;列车速度对基床表层动位移影响较小,速度每提高20 km.h-1,其值变化不大于0.05 mm;路基表层动应力随列车速度的提高呈现一定的波动趋势。计算结果与实测结果相似,证明了该模型的正确性。  相似文献   

5.
高速铁路无砟轨道路基结构适应性动力分析   总被引:3,自引:0,他引:3  
为了解高速铁路轨下基础结构的动力适应性,在系统回顾轨下基础结构分析发展历程的基础上,通过有限元数值积分方法,建立了遂渝线无砟轨道路基模型,分析了列车运行速度、轴重及基床表层弹性模量对基床表层动应力、竖向动位移和竖向加速度等动力响应的影响规律,探讨了无砟轨道在列车轮载作用下的结构行为.研究表明:基床的结构性能直接影响轨下基础的结构状态,有必要加强轨下基础结构;新型轨下基础结构(如沥青混凝土整体道床)可以很好地满足无砟轨道结构和功能的要求,应作为重点研究方向之一.  相似文献   

6.
为了研究板边离缝对高速铁路基础结构动力特性的影响,利用CRTS III型板式轨道-路基全尺寸试验模型开展了落轴试验,实测了轨道板与自密实充填层一侧界面处离缝的几何分布,并利用ANSYS/LS-DYNA有限元软件建立了相应的动力有限元分析模型,分析了板边离缝对轨道和路基结构冲击动力特性的影响规律,并利用相应的试验结果对数值结果进行了对比验证. 研究结果表明:轨道板和自密实层界面处单侧离缝的平均宽度和平均高度分别为28.18 cm和2.15 mm;板边离缝宽度对基础结构动力特性的影响要大于离缝高度;在0~800 mm的范围内,随着离缝宽度的增加,轨道和路基位移以及钢轨加速度、轨道板加速度和基床底层加速度都持续增加,其中轨道板的位移和加速度的增幅均为最大,分别为56.8%和143.3%,充填层、支承层和基床表层的垂向加速度随离缝宽度的增加先增大后减小,当离缝尖端扩展至钢轨正下方附近时达到最大值;在0~3 mm的范围内,轨道和路基垂向位移与加速度均随离缝高度的增大而略微增加,最大增幅分别为8%和12%;越靠近离缝界面层面,离缝高度对其冲击动力特性的影响也越显著.   相似文献   

7.
通过大型有限元软件ANSYS建立的三维有限元分析模型,对高速铁路列车—基床空间耦合振动响应进行了分析,分析结果表明路基结构的横向振动稳定性好,动变形主要集中在基床范围内,基床以下动变形较小,应以竖向变形作为路基基床设计的控制性因素。  相似文献   

8.
为了研究板边离缝对高速铁路基础结构动力特性的影响,利用CRTSⅢ型板式轨道-路基全尺寸试验模型开展了落轴试验,实测了轨道板与自密实充填层一侧界面处离缝的几何分布,并利用ANSYS/LS-DYNA有限元软件建立了相应的动力有限元分析模型,分析了板边离缝对轨道和路基结构冲击动力特性的影响规律,并利用相应的试验结果对数值结果进行了对比验证.研究结果表明:轨道板和自密实层界面处单侧离缝的平均宽度和平均高度分别为28.18 cm和2.15 mm;板边离缝宽度对基础结构动力特性的影响要大于离缝高度;在0~800 mm的范围内,随着离缝宽度的增加,轨道和路基位移以及钢轨加速度、轨道板加速度和基床底层加速度都持续增加,其中轨道板的位移和加速度的增幅均为最大,分别为56.8%和143.3%,充填层、支承层和基床表层的垂向加速度随离缝宽度的增加先增大后减小,当离缝尖端扩展至钢轨正下方附近时达到最大值;在0~3 mm的范围内,轨道和路基垂向位移与加速度均随离缝高度的增大而略微增加,最大增幅分别为8%和12%;越靠近离缝界面层面,离缝高度对其冲击动力特性的影响也越显著.  相似文献   

9.
为了把握基床表层含沥青混凝土层的温度场特性,采用瞬态传热的有限元分析方法,对寒区高铁无砟轨道结构温度场时空分布规律及沥青混凝土层的影响进行了分析. 首先,建立了基于哈尔滨-齐齐哈尔客运专线无砟轨道结构(CRTS)的温度场数值模型;然后,运用现场观测结果对数值模型进行了校核;最后,运用对比分析方式评估了基床表层沥青混凝土层的温度场特性,以及无砟轨道结构特征横截面与特征点位的温度分布的时变规律. 结果表明:东北地区无砟轨道结构温度场具有明显的非均匀性,其横向温度分布呈现双U型分布特征,温度梯度呈现非线性特性,且随着季节变换呈现较复杂的正负梯度交替变化;东北地区无砟轨道结构对路基温度的影响深度约为0.4 m,月影响深度约为2.5 m,年影响深度可达4.0 m;基床表层铺设的薄层沥青混凝土对路基起到了良好的保温作用,会使得基床表层的日平均温度提高1~7 ℃左右,而寒区无砟轨道结构温度场的分布规律不会显著改变.   相似文献   

10.
随东西部铁路建设的快速贯通,高原山区铁路的设计时速不断提高,其铁路建设中路基设计与施工方面的要求也随之提高。路基本体、基床是构成高速铁路路堤重要组成部分,其中铁路基床分为基床表层、基床底层两部分。作为高速铁路轨道的直接基础,基床表层是影响路基建设的重要部分。就铁路路基填料的施工及检测进行统计分析,以供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号