首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了研究空气弹簧失气对地铁车辆动力学性能的影响,根据车辆系统动力学和非线性接触理论,建立了地铁车辆非线性动力学模型和空气弹簧失气状态下的黏滑接触力元模型,分析了地铁整车空气弹簧失气状态下地铁车辆的临界速度、轮轴横向力、轮轨横向力、脱轨系数、轮重减载率和平稳性指标并与空气弹簧正常状态进行了对比。结果表明:空气弹簧失气会使地铁车辆的临界速度降低,会使地铁车辆的脱轨系数、轮重减载率、横向平稳性和垂向平稳性明显增大,并且空簧失气对脱轨系数和垂向平稳性的影响尤为显著,因此必须密切关注空气弹簧的状态以保证地铁车辆平稳安全运行。  相似文献   

2.
基于多体系统动力学理论,利用多体动力学软件建立了某型高速车辆系统动力学模型,对比分析了不同轮轨耦合作用下车辆系统的振动响应,计算得到了两种轮对的非线性临界速度,并合理选取了六种典型线路工况,研究了不同轮轨耦合作用对车辆系统动力学性能的影响.结果表明:轮对弹性变形使车辆系统的非线性临界速度降低,并降低了车辆系统与无质量轨、移动质量轨耦合下的脱轨系数、轮轨横向力和轮轴横向力等动力学指标,但与柔性轨道耦合时,上述动力学指标却升高;当车辆系统与无质量轨耦合时,轮对弹性变形使车体Sperling平稳性指数在横向上最大增幅为5.3%,而在垂向上最大增幅仅为0.7%.  相似文献   

3.
在既有线货物列车提速和重载的背景下,为了研究空车编组数量对货物列车运行安全性的影响,根据车辆系统动力学理论、列车纵向动力学理论、车辆-轨道耦合动力学理论,采用数值方法建立了空重车混编列车-轨道耦合系统动力学模型,分析了制动工况下不同数量空车编组在货物列车头、尾部时,货物列车的轮轴横向力、脱轨系数、轮重减载率等安全性指标变化情况。结果表明:当列车头部(机车后部)和尾部各编组5,10,20辆空车时,制动工况下,空车及重车的轮轴横向力、脱轨系数、轮重减载率均满足GB/T 5599-2019《机车车辆动力学性能评定及试验鉴定规范》标准要求,且有一定安全裕量;列车中空车的轮轴横向力和轮轨横向力均小于重车,空车的脱轨系数和轮重减载率大于重车;当列车头、尾部各编组5辆空车时,空车及重车的轮轴横向力均最小,而其他两种编情况下横向轮轴力相差不大;对于脱轨系数和轮重减载率,除尾部编组5辆空车的情况外,编组在头部的空车的脱轨系数和轮重减载率均大于尾部空车,在列车头部和尾部各编组10,20辆空车时两列车整体轮重减载率差异较小。  相似文献   

4.
车辆系统空气弹簧失气安全性分析   总被引:1,自引:0,他引:1  
建立了具有刚度衰变特性的空气弹簧失气模型和非线性粘滑接触模型,结合车辆系统动力学,模拟空气弹簧失气动态过程与失气后的应急状态,分析了空气弹簧失气后车辆系统的稳定性与空气弹簧突然失气对车辆动力学性能的影响,研究了不同失气过程时长、运行速度与曲线通过工况下空气弹簧失气车辆的安全性。计算结果表明:空气弹簧失气后车辆临界速度由623km.h-1大幅降低为351km.h-1。空气弹簧突然失气导致轮轨垂向力减小,轮重减载率增大,且失气过程越短,轮重减载率越大,失气过程为0.2s时轮重减载率达到0.651。车辆运行速度低于300km.h-1时,车速对轮重减载率和轮轨力影响不明显,当大于300km.h-1时,减载率随车速增大迅速增大。车辆通过曲线时,在圆曲线上失气最危险,轮重减载率最大为0.652。  相似文献   

5.
基于柔性多体动力学理论建立了能够考虑车体柔性的车辆模型,在模型中,将车体简化为一根长度为车体长度的欧拉梁,利用自由边界欧拉梁的弹性振型代替车辆的弹性振型,此时车体的运动等于车体的刚性运动叠加自由边界欧拉梁弹性振型的广义运动.研究表明:考虑车体柔性时,车体的动力响应增大,且在轨道不平顺及桥梁激励下,车体加速度在某些车速点会产生共振;车体刚度并非越大越好,在一定的速度等级下,车体刚度较大时的车辆动力响应反而更为剧烈;车体柔性对桥梁动力响应、轮轨横向力、脱轨系数和轮对减栽率影响很小.  相似文献   

6.
针对特殊地区地震作用下大跨度桥梁行车安全性问题,以某铁路某双层结合钢桁混合刚构桥为工程背景,建立了考虑材料非线性、切向摩擦与轮轨赫兹准确接触关系的列车-轨道-桥梁耦合振动分析模型,并基于ABAQUS-Python软件二次开发,实现了钢轨随机不平顺的施加;选取EL Centro地震波为输入波,分析了强震作用下双层结合钢桁混合刚构桥的损伤演化规律,计算了不同地震强度、不同车速下列车脱轨系数、轮重减载率、车体振动加速度等动力响应指标,分析了关键参数对地震作用下桥上行车安全性的影响规律,提出了该混合刚构桥基于行车安全性能的车速限值。研究结果表明:在罕遇地震作用(0.38g)下,桥梁各构件均出现不同程度的塑性损伤,桥墩破坏区域较大,震后桥梁仍具有一定的承载力;震时列车脱轨系数随地震强度增大而显著增大;车体最大振动加速度与地震强度近似呈线性增长;列车轮重减载率是控制行车安全的关键指标,其峰值与车速呈正相关;当车速为200 km·h-1,地震强度大于0.10g时,列车轮重减载率存在超限情况,列车在下桥时会出现长时间轮轨分离现象;从行车安全性的角度,在设计地震作用0.20g时,安全车速为160 km·h-1。   相似文献   

7.
为了分析偏载列车在小半径曲线运行的安全性问题,基于重载列车纵向动力学模型和短编组三维重载车辆轨道耦合动力学模型,对偏载车辆的安全性指标进行了分析. 首先利用纵向动力学模型分析了重载列车纵向冲动时的车钩力特征和变化规律,其次将计算得到的车钩力作为边界条件输入到三维短编组重载车辆轨道耦合动力学模型,研究了小半径曲线运行时车钩力和车辆偏载量对列车安全性指标的影响. 研究结果表明:单编万吨列车的最大车钩压力随着车位的增大而减小;货车向外侧偏载时,钩压力对偏载货车安全性影响较大,钩拉力影响较小. 当钩压力增大到800 kN和车辆偏载量增大到500 mm时,轮重减载率将会增大到1.00,因此,制动工况更容易出现偏载脱轨事故;相同偏载量下,曲线外侧偏载下的轮重减载率比内侧偏载情形的大;当钩压力由0增大至800 kN时,由轮重减载率确定的横向偏载量安全限值由?421 mm降低至?215 mm,设定重载列车偏载的安全限值的时候应考虑纵向冲动的影响或制动加速度量的控制.   相似文献   

8.
为准确评估某新型全自动智能轨道巡检车的动力学性能,开展了轨道巡检车动力学数值仿真;轮轨接触采用非椭圆多点接触Kik-Piotrowski算法模拟,车辆系统建模过程中考虑悬挂力元非线性与轮轨接触几何非线性特性等因素,同时考虑车载设备参振影响;针对车轮踏面表面包裹高硬度聚氨酯的特殊结构,利用有限元软件ABAQUS建立了轮轨局部接触模型,采用Mooney-Rivlin橡胶模型模拟了聚氨酯特殊性质,计算了轮轨等效接触刚度;根据有限元计算结果修正了Kik-Piotrowski算法中的相关参数;基于Craig-Bampton模态综合法和多体动力学软件UM建立了车辆-轨道刚柔耦合模型;为验证仿真模型的准确性,开展了实车动力学试验;重点分析了直线和300 m小半径曲线,运行速度10~30 km·h-1工况下巡检车的振动响应。研究结果表明:车辆正常运行时,中间视觉模块垂向最大加速度大于左侧视觉模块垂向最大加速度,横向最大加速度小于左侧视觉模块横向最大加速度,车架最大加速度大于视觉模块最大加速度;车架中部易产生垂向弯曲变形,和视觉模块安装位置有胶垫减振有关;轨道巡检车在直线和300 m小半径区间运行性能整体良好,其中车辆在300 m小半径曲线段内30 km·h-1运行时,轮重减载率最大可达0.92,车架部位振动响应较大,为保证车载设备的安全性和避免车辆脱轨的风险,建议曲线段内检测速度控制在20 km·h-1左右。   相似文献   

9.
为保障高速铁路桥墩沉降区域的列车运行安全平稳性,提出了一种基于列车-轨道-桥梁动力相互作用理论的高速铁路桥墩沉降控制阈值研究方法;探讨了既有标准中的桥墩沉降限值,并确定了影响桥墩沉降控制阈值的关键因素;基于列车-轨道-桥梁动力相互作用理论,考虑轨道随机不平顺、轮轨非线性接触关系等非线性因素,建立了考虑桥墩沉降和多影响因素的高速列车-轨道-桥梁耦合动力学模型;在此基础上,研究了多因素条件下桥墩沉降对列车-轨道-桥梁系统的影响,并从保证列车安全平稳运营的角度提出了适用于中国高速铁路桥墩沉降的控制阈值。研究结果表明:研究高速铁路桥墩沉降控制阈值时不能忽略轨道随机不平顺、温度作用、混凝土收缩徐变等因素的影响;随着桥梁跨度的增大,混凝土收缩徐变和温度作用导致车体垂向加速度和轮重减载率增大,桥墩沉降则导致上述指标减小;考虑多因素后,车体垂向加速度和轮重减载率与不考虑这些影响因素相比明显增大;随着桥墩沉降的增大,列车通过不同不平顺样本时车体垂向加速度和轮重减载率均超标;为保证列车运行安全性与乘坐舒适性,高速铁路桥墩沉降控制阈值建议为10 mm;在本文得到的控制阈值基础上进一步考虑施工误差等其他因素即可得到准确的标准限值,研究结果可为桥墩沉降限值的最终确定提供研究方法和数据支撑。   相似文献   

10.
为探讨结构拟静力分量对地震作用下高速铁路桥上列车行车安全性的影响,考虑路基和桥梁地震力边界条件,分别采用相对运动法和大质量法,在相对坐标系和绝对坐标系下处理地震力边界条件,建立了不同坐标系下的列车-轨道-桥梁系统地震响应分析模型.以跨度48 m+580 m+48 m的刚构-连续组合梁桥为例,分析了结构单向和三向拟静力分量对列车-轨道-桥梁系统地震响应的影响.结果表明:结构横向拟静力分量将显著增大桥梁横向位移、钢轨横向位移、列车脱轨系数和轮重减载率,而纵向、竖向拟静力分量的影响甚微;同时考虑结构的三向拟静力分量时,列车脱轨系数和轮重减载率均显著增大,且其相对误差随列车速度提高而增大,最大达30.5%和22.2%.因此,不考虑结构拟静力分量在列车速度较高时将严重低估车辆的动力响应,对桥上列车的行车安全性造成误判.   相似文献   

11.
为提高铁路军事运输的安全性,在比较分析实际装载与运行工况后,研究在一定车型、线路工况和装载条件下,货物重心纵向不偏移、横向偏移对车辆在不同速度级下通过曲线运行安全性指标(脱轨系数、轮重减载率)的影响机理。通过分析SIMPACK仿真得到的实验数据,得出车辆向内倾覆或向外倾覆时,货物重心横向偏移量越大,脱轨系数越大,轮重减载率也越大,越容易发生危险等结论。为车辆在实际不利装载条件下的运行提供一定的理论借鉴。  相似文献   

12.
考虑了车辆导向轮对一侧轴箱钢簧出现失效的四种工况:钢簧内外圈均断裂、外圈断裂、内圈断裂和钢簧"冻死",建立了钢簧失效工况下的车辆系统动力学模型,分析了钢簧失效对车辆动力学性能的影响。仿真结果表明:钢簧失效后,轮对的平衡位置偏离轨道中心线,全断裂工况下偏离最大,约为3mm;车辆的临界速度降低,全断裂工况下降低最大,约为30km·h-1;失效弹簧所在轮对的轮载差变化较大,全断裂工况下轮载差最大,约为50kN;转向架断裂弹簧处及其斜对角轴箱悬挂垂向力将减小,另一对角处的轴箱悬挂垂向力将增大,从而使转向架承受较大的扭曲载荷;钢簧失效很容易使脱轨系数和轮重减载率等安全性指标超过限定值,增加了车辆运行安全的隐患,在直线上200~300km·h-1速度范围内和曲线(半径为7 000m)上100~300km·h-1速度范围内,全断裂工况下的减载率都超过0.8;钢簧失效对车辆横向平稳性影响不大,但钢簧"冻死"会使垂向平稳性变差,相对于正常工况,在300km·h-1时增加约0.1。  相似文献   

13.
钢轨扣件失效对列车动态脱轨的影响   总被引:2,自引:3,他引:2  
建立了非对称车辆/轨道耦合动力学模型,分析轨道扣件失效对车辆动态脱轨的影响,考虑离散轨枕支承对车辆/轨道耦合作用的影响,通过假设轨道系统刚度沿纵向分布发生突变来模拟扣件组失效状态,推导了考虑钢轨横向和垂向以及扭转运动的轮轨滚动接触蠕滑率计算公式,利用Hertz法向接触理论和沈氏蠕滑理论计算轮轨法向力及轮轨滚动接触蠕滑力,采用新型显式积分法求解车辆/轨道耦合动力学系统运动方程,通过数值分析计算,得到轮轨横垂向力之比、轮重减载率、脱轨危险状态的持续时间和轮对踏面上轮轨接触点位置的变化。连续5个钢轨扣件不同程度失效对列车动态脱轨的影响的数值模拟结果表明,如果失效因子从0.8增大到1.0,即钢轨扣件经历从接近完全松脱到完全松脱,钢轨扣件失效对列车动态脱轨影响呈指数规律。  相似文献   

14.
选取徐兰高铁1组道岔作为研究对象,采取个性化道岔钢轨廓形打磨,分析打磨前后轮轨几何关系,并建立车辆-道岔耦合无砟轨道系统动力分析模型,研究对比打磨前后高速列车动力学特性。结果表明:通过个性化钢轨打磨道岔后,道岔钢轨左右股较为对称,轮轨等效锥度得到优化;列车通过道岔时,轮轨横向力峰值、轮轨磨耗功峰值均显著降低,列车轮轨作用力得到改善;轮重减载率峰值、脱轨系数峰值及轮轨横移量峰值均降低,列车安全性得到显著提升;车体横/纵向加速度峰值及构架横/纵向加速度峰值均降低,列车运行稳定性得到提升。  相似文献   

15.
为了合理控制车辆轮对定位间隙,提高磁流变耦合轮对车辆在高速时的横向动力学性能,建立该车辆的空间动力学模型,分析了轮对纵向定位间隙对车辆临界速度和曲线通过性能的影响。得出了纵向定位间隙的增大能使磁流变耦合轮对车辆的临界速度急剧下降,轮对横移量和冲角、轮轨横向力和车体横移加速度快速增大;只有在小间隙的条件下,车辆在高速铁路上才具有较高的临界速度和较好的曲线通过性能。  相似文献   

16.
轨道不平顺激励下直线电机车辆/轨道动力响应   总被引:2,自引:0,他引:2  
为了提高直线电机轮轨交通车辆运行的安全性与乘坐舒适性,分析了车轨结构特征,建立了直线电机车辆/板式轨道横、垂向动力学模型。通过三角级数法得到轨道随机不平顺的时间序列,以其作为系统激励,分析了直线电机车辆与轨道的随机振动特性。把轨道不平顺描述为余弦函数,研究了高低不平顺与方向不平顺的波长和幅值对系统动力响应的影响规律。计算结果表明:磁轨气隙变化的频率主要集中在1.2~2.0Hz范围内,波长小于10m的高低和方向不平顺对系统轮轨作用力、脱轨系数及轮重减载率等影响显著增大,应予以重点控制。  相似文献   

17.
平地上高速列车的风致安全特性   总被引:6,自引:1,他引:5  
为研究高速列车在强侧风作用下安全行驶问题,基于空气动力学和多体系统动力学理论,建立了高速列车空气动力学模型和车辆系统动力学模型.应用该模型计算了不同风向角、不同风速和不同车速下作用于车体上的侧风气动载荷.根据高速列车整车试验规范,以脱轨系数、轮重减载率、轮轴横向力和轮轨垂向力为运行安全指标,分析了头车、中间车和尾车的运行安全性.研究表明:头车的安全性最差,且风向角为90°时,横风情况下最危险.随着车速的增大,最大安全风速急剧减小.当车速为200km/h时,最大安全风速为29.61 m/s;当车速为400 km/h时,最大安全风速为18.87m/s.  相似文献   

18.
基于耦合动力学理论,利用有限元方法建立了车辆-轨道耦合系统振动分析模型,输入不同截止波长的不平顺数据进行动力仿真计算,以确定轨道不平顺管理波长范围.高低不平顺主要影响车体的沉浮和点头运动,引起车体垂向加速度增大;轨向不平顺主要影响车体的侧滚和摇头,引起车体横向振动加速度增大.长波不平顺的影响主要体现在车体振动上,因此本文选定车体加速度作为确定不利波长的判定指标,对提速线路200km/h和250km/h速度下轨道不平顺波长管理的范围进行了探讨,并提出了提速线路轨道不平顺波长管理的建议.  相似文献   

19.
根据多刚体动力学理论,运用SIMPACK仿真软件分别建立了一定装载工况和运行工况下双层集装箱车辆的单车动力学仿真模型和四车动力学仿真模型。基于铁路车辆运行安全评价指标及其标准,将模型仿真结果与双层集装箱列车实际运行试验的结果进行了对比分析,研究了重车重心高度与运行安全性的关系,给出了合理的双层集装箱重车重心限制高度。仿真结果表明:随着双层集装箱重车重心高度的增大,轮轴横向力、轮重减载率与脱轨系数增大,最先达到安全限度的是脱轨系数;在最不利装载工况下,安全的重车重心高度限值为2 480 mm。  相似文献   

20.
为了掌握车辆爬轨脱轨机理及主要影响因素,分析了轮对的三维空间受力,推导了轮轨横向力和垂向力比值的一般表示式,假设车轮在达到最大轮缘接触角时为脱轨的临界状态,并认为这时轮轨间出现完全摩擦滑动,导出了不考虑轮对摇头角的临界脱轨判别的二维准则与考虑轮对摇头角和轮轨蠕滑率效应的三维脱轨判别准则,给出了轮轴脱轨系数的定义,采用轮轴脱轨系数和轮重减载率进行脱轨的判别。仿真计算结果表明:二维脱轨判别准则与三维准则相比偏于保守;摇头角越小甚至变负,越有利于防止脱轨,摇头角越大,三维准则的临界脱轨曲线越接近于二维准则的;减小轮轨摩擦系数与增大轮缘角均有利于防止脱轨的发生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号