首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
公路车桥耦合振动响应计算方法对比研究   总被引:1,自引:0,他引:1  
使用有限单元方法,分别建立了桥梁结构的振动计算模型和车辆的振动计算模型,考虑车桥接触点的位移连续,分别提出了考虑桥梁全自由度的车桥耦合振动模型和使用桥梁振动模态的模态综合计算模型。将桥梁结构的振动响应计算转化为求解模态广义坐标,并结合车辆振动与桥面的耦合,建立结构模态广义坐标和车辆振动自由度耦合的系统方程,使用Newmark-β数值积分方法对时变耦合系统进行求解。为了验算方法的有效性和可靠性,分别计算了平面梁在集中力作用下,空间板结构在整车模型作用下的振动响应,研究结果表明,使用模态综合法求解公路桥梁车桥耦合振动响应的结果可靠,并有很高的计算效率,该方法具有广泛的适用性。  相似文献   

2.
基于MATLAB的公路桥梁车桥耦合数值计算方法   总被引:1,自引:0,他引:1  
应用达朗贝尔原理推导了两自由度车辆和桥梁的振动平衡方程,提出用龙格-库塔法和NEWMARK法来求解车桥耦合振动问题。针对NEWMARK法提出了求解分离的车辆和桥梁运动方程组的分析策略:在每一个时间步长内进行迭代计算并将桥梁的振动平稳状态作为收敛条件。利用MATLAB结合两种数值计算原理分别编制了车桥耦合计算程序。算例分析表明:两种方法的计算精度都较高;采用NEWMARK法求解时,在每个时间步内迭代计算至桥梁振动平稳状态是有意义的。  相似文献   

3.
连续梁在行驶车辆作用下的动态反应   总被引:5,自引:0,他引:5  
把桥梁和车辆看作两个分离体系,把车辆视为二维非线性模型,并考虑到桥面的路面不平度影响,应用虚功原理和模态叠加法分别建立振动方程,在车辆与桥梁接触点采用接触力和位移协调的条件,利用迭代技术求解二者之间的相互作用力。以一座三跨连续梁为例,计算了该桥的动挠度曲线和相应的冲击系数。结果显示车辆在边跨行驶时中跨跨中截面的冲击系数要远大于车辆在中跨行驶时的冲击系数,桥梁在车辆动荷载作用下的冲击系数与车辆动力特性、车速、桥梁动力特性以及路面不平度等密切相关,仅仅看作桥梁基频的函数是过于简化的。  相似文献   

4.
为研究车桥耦合振动对双层公路钢桁桥冲击效应的影响,基于分离法,以车轮与桥面接触点为界,将车桥耦合振动系统分为车辆与桥梁2个子系统,分别采用虚功原理与有限元法建立各自的运动方程,并通过车轮与桥面接触处的位移协调条件及车桥相互作用力的平衡关系相联系,采用迭代法求解系统响应。以某双层公路简支钢桁梁桥为研究对象,应用ANSYS软件建立三维梁格有限元模型,分析了车速、桥梁阻尼、桥面平整度及不同加载模式对车桥耦合振动的影响。研究结果表明:车速与双层钢桁梁桥冲击系数之间没有规律性的函数关系;桥梁阻尼增大,能使钢桁桥杆件内力、位移冲击系数适当降低;桥面平整度是车桥耦合振动的一个重要激励,桥面状况越差则车辆振动越强烈,对桥梁的整体和局部产生的冲击作用越大;单双层加载模式的不同对桥梁整体的动力响应改变不大,但是对局部动力响应的影响比较明显,应在桥梁设计时考虑局部冲击效应的影响。  相似文献   

5.
连续梁桥车桥耦合振动分析的数值解法   总被引:3,自引:0,他引:3  
将连续梁桥简化为二维的平面梁单元模型,车辆简化为五自由度二分之一车模型,分别建立车辆与桥梁振动方程;该方法以车轮接触处位移协调条件与相互作用力的平衡关系相联系,建立车辆与桥梁耦合振动方程,利用模态综合叠加法并结合Newmark-β积分格式进行迭代求解.通过本文数值解与解析方程的Runge-kutta法解进行对比,证明该方法确实有效可行.由于桥梁振动响应主要由若干低阶振动模态起控制作用,对于大跨度复杂桥梁,这就大大降低了矩阵的维数,提高了计算速度,且该方法对于不同类型桥梁具有很强的通用性.  相似文献   

6.
通过三角级数叠加法模拟桥面不平顺激励,运用大型有限元通用分析软件ANSYS的耦合技术对车-桥耦合振动进行了分析.提出了5个自由度的车辆模型模拟重车,160个梁单元模型模拟简支梁桥,把车辆和桥梁结构视为2个系统,利用Newmark-β法求解车-桥耦合振动方程组,进行了桥梁结构振动的位移、弯矩的响应研究.得到了桥梁跨中最大位移和弯矩都不是发生在桥梁跨中位置;随着桥面不平顺有明显的变化,随着桥面状况的变差,其响应越来越大.  相似文献   

7.
铁路提篮拱桥车桥耦合振动分析   总被引:8,自引:0,他引:8  
采用车桥耦合振动理论,分别建立了铁路车辆和提篮拱桥的动力模型及其运动方程.将车辆和提篮拱桥分为2个由非线性轮轨接触力联系的振动子系统,采用迭代法求解这2个子系统.用自编的车桥耦合振动软件对提篮拱桥的车桥耦合振动进行了分析,并对桥梁的横向与竖向位移、动力放大系数、车辆脱轨系数和轮重减轻率进行了评价,在所讨论的工况下,均满足我国相关规程的要求.  相似文献   

8.
将桥梁划分为欧拉梁单元建立桥梁的振动方程,基于拉格拉日原理建立汽车的振动方程,根据接触点处的接触力将汽车和桥梁系统耦合在一起。求解汽车-桥梁系统耦合方程得到桥梁节点动力响应,由广义正交函数和模态叠加原理确定模态响应及其导数,用正则化方法得到稳定的识别结果。数值模拟结果表明,该方法用于识别车桥接触力是有效的、可行的。  相似文献   

9.
大跨度窄加劲梁悬索桥竖向振动响应研究具有现实意义。基于动力平衡理论和有限元法建立车辆和桥梁的动力微分方程,采用空间三轴车辆模型,利用ANSYS软件编制车桥耦合振动程序进行计算。激振源为路面不平整度,利用车桥系统力与位移协调条件,应用Newmark-β法求解动力方程,分析不同车速、车重、路面等级工况下车辆荷载对大跨度窄钢桁加劲梁悬索桥跨中竖向振动响应的影响。结果表明:车速和路面等级主要对竖向振动加速度响应有较大影响,而对竖向振动位移响应影响较小;竖向振动加速度响应随车速增大而增大,随路面等级降低而增大;随车重的增加竖向振动位移响应增加,而竖向振动加速度降低。  相似文献   

10.
车桥振动问题现状研究与分析   总被引:2,自引:0,他引:2  
从车辆模型及其振动方程的建立、车桥系统的耦合条件分析及耦合振动方程的求解三个方面对车桥振动现代理论方法进行综合评价,并对车桥振动问题研究存在的问题进行初步的探讨,有助于更加真实地模拟车辆和桥梁的性态和揭示整个系统的动态性能.  相似文献   

11.
基于ANSYS的车桥耦合动力分析   总被引:1,自引:0,他引:1  
为准确分析车桥之间的相互作用,根据达朗贝尔原理推导出了车桥系统动力平衡方程。通过位移协调方程及车桥相互作用联系方程,将车桥两系统耦合起来并通过ANSYS实现。数值算例表明:运用基于ANSYS车桥耦合动力分析方法所得结果与利用振型叠加法所得结果吻合良好,表明该方法是正确而有效的,可用于分析各种车桥耦合振动问题。  相似文献   

12.
以刘家峡大桥为工程背景,建立了钢桁架梁悬索桥的有限元模型,采用改进谐波合成法模拟了脉动风荷载,结合大跨桥梁颤抖振分析的基本理论,计算了对应于桥梁各节点的静风力、抖振力和自激力.在此基础上,利用ANSYS参数化设计语言(APDL)编制了相应的计算程序,将计算所得的各类风荷载施加在全桥有限元模型的节点上,对刘家峡桁架梁悬索桥进行了颤抖振时域分析,以精确求解不同桥面基准风速下,桥梁各关键部位的抖振扭转角、抖振侧向位移、抖振竖向位移,进而研究了风速变化对悬索桥最大颤抖振响应的影响.与全桥模型风洞试验的对比结果表明:对大跨桥的颤抖振分析方法是合理可行的,可为同类大跨桥梁风致振动的研究提供科学的依据和参考.  相似文献   

13.
针对大跨铁路悬索桥结构复杂、几何非线性显著的特点开展行车动力分析,提出了一种ANSYS与MATLAB实时交互、联合仿真的列车-轨道-桥梁耦合振动分析方法; 在ANSYS内建立悬索桥和轨道结构精细有限元模型,在MATLAB内基于多刚体动力学理论组装车辆质量、阻尼和刚度矩阵,并将轨道结构动力微分方程系数矩阵导至MATLAB中; 分别建立悬索桥子系统、轨道-车辆子系统的动力微分方程,然后基于异步长策略,以大时间步长在ANSYS内考虑主缆几何刚度,并通过更新结构刚度矩阵来求解悬索桥子系统振动响应,以小时间步长在MATLAB内考虑轮轨空间接触关系,并通过施加轨道不平顺来求解轨道-车辆子系统动力响应,2种计算软件通过实时交换数据实现子系统之间的耦合求解; 通过分析某单跨铁路简支梁桥的实测数据验证了该方法的正确性,并利用该联合仿真方法对主跨为660 m的某铁路悬索桥进行了行车动力计算。分析结果表明:随着车速的提高,桥梁动力响应增大,行车安全性与平稳性趋于恶化; 在车速不大于180 km·h-1的工况下,该悬索桥能够满足行车安全性要求; 在列车动力荷载作用下,不考虑悬索桥几何刚度会导致跨中竖向位移产生7.4%的计算误差; 考虑几何刚度、不更新桥梁刚度矩阵导致的桥梁与列车响应计算误差均不超过1%,能够满足工程计算精度需求。可见,提出的联合仿真方法可用于大跨柔性铁路桥梁的行车动力分析。   相似文献   

14.
为了研究复杂阶梯状扬矿管在采矿船升沉运动和海流作用下的纵向振动特性,利用连续弹性杆振动理论,对5 000 m长扬矿管纵向振动性能进行分析. 首先,根据达朗贝尔原理建立扬矿管纵向振动数学模型,采用分离变量法推导管道固有频率方程;然后,进行振型的质量归一化处理;最后,利用ABAQUS软件建立扬矿管有限元模型,对管道的纵向动态响应进行研究. 研究结果表明:扬矿管的一阶纵向共振频率处于矿区海浪能量集中的频带内,随着中间矿仓质量的增加扬矿管固有频率减小,中间矿仓质量对高阶固有频率的影响更加明显;随着海浪频率的增加,纵向振幅、轴向力和轴向应力先增大后减小,并在一阶固有频率时达到峰值,其峰值分别发生在扬矿管5 000、0、1 000 m处;随着采矿船升沉幅值的增加,扬矿管的动态响应逐渐增大,当升沉幅值大于1.5 m时,扬矿管动态响应的增长速度变缓;扬矿管发生一阶纵向共振时,振动位移和轴向力先增大后作等幅稳态振荡;随着海水深度的增加,沿管长方向的振动幅值逐渐增大,振动平衡位置发生下移,振动响应时间发生延迟,同时轴向力和轴向应力逐渐减小,且轴向应力在每两级阶梯管间急剧变大.   相似文献   

15.
连续刚构桥船桥碰撞的计算模型和动力响应   总被引:1,自引:1,他引:0  
以连续钢构桥为例,基于碰撞理论和边界等代原理,研究了船桥碰撞的计算模型;基于Timoshenko剪切变形理论和Hamilton能量泛函变分原理,考虑桥墩的弯曲、剪切、地基效应和上部结构的影响,导出了碰撞体系的动力微分方程;采用积分变换方法,对碰撞体系的控制微分方程和边界条件进行Laplace变换,在频域内求得波动解;运用Crump逆变换方法,使用数学软件Matlab编程进行数值反演,得到时域内的撞击力和各种动力响应。  相似文献   

16.
单车荷载作用下T型刚构桥车致振动响应研究   总被引:3,自引:0,他引:3  
根据车辆-桥梁结构振动特性,研究单车移动荷载作用下,T型刚构桥考虑桥面不平顺影响时桥梁振动响应及冲击特性。通过将T型刚构桥离散为三维梁单元有限元模型,车辆简化为九自由度整车模型(考虑车辆俯仰及侧翻),桥面不平顺激励采用实测和数值模拟(根据国标GB/T7031—86给定功率谱密度曲线采用三角级数叠加法模拟)两种激励;以车轮与桥面相互接触处保持不脱离为条件,建立车辆与桥梁耦舍振动方程,利用模态综合法并结合Newmark—β数值积分方法进行迭代求解。以乔木湾乐安河T型刚构桥为工程背景,研究了单车荷载下,最不利位置处的冲击系数随桥梁结构阻尼、行车速度、桥面不平顺及车辆特性的变化关系,并将数值模拟结果与实测结果对比。研究结果表明,实测冲击系数与数值模拟的冲击系数较好吻合,乐安河大桥冲击系数满足04《桥规》要求。  相似文献   

17.
为了更加有效地建立列车运营速度与桥梁最大位移响应之间的关系, 针对单个移动荷载激励下桥梁最大位移响应提出了一种频域分析方法; 采用傅里叶变换推导出单个移动荷载匀速通过梁桥时的移动荷载谱和桥梁振动位移响应谱, 通过分析移动荷载幅值谱获得了导致桥梁自由振动位移出现极值响应的移动荷载速度, 并提出了该移动荷载速度的计算公式; 以一简支梁为例, 通过与相关文献结果的对比, 验证了本文数值计算程序的正确性, 进一步基于该程序, 通过数值分析验证了频域分析方法理论推导的正确性和移动荷载速度计算公式的准确性。研究结果表明: 在频域内得到的移动荷载幅值谱与时域内得到的桥梁自由振动幅值响应规律一致, 因此, 移动荷载幅值谱能有效反映桥梁自由振动位移响应; 导致桥梁发生自由振动最大位移响应的移动荷载速度与移动荷载幅值谱最大值对应的速度相等, 且移动荷载幅值谱的其他极值点与桥梁自由振动位移响应极值点对应的移动荷载速度一致; 在自由振动阶段, 桥梁位移响应极值点对应的单个移动荷载速度仅与桥梁自振频率和跨度有关; 单个移动荷载以共振速度通过桥梁时, 桥梁发生的受迫振动与自由振动位移响应均不是最大响应, 因此, 对于高速铁路桥梁的列车运营速度, 除关注列车共振速度外, 需更加重视使桥梁产生最大位移响应的速度。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号