首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
为了分析偏载列车在小半径曲线运行的安全性问题,基于重载列车纵向动力学模型和短编组三维重载车辆轨道耦合动力学模型,对偏载车辆的安全性指标进行了分析. 首先利用纵向动力学模型分析了重载列车纵向冲动时的车钩力特征和变化规律,其次将计算得到的车钩力作为边界条件输入到三维短编组重载车辆轨道耦合动力学模型,研究了小半径曲线运行时车钩力和车辆偏载量对列车安全性指标的影响. 研究结果表明:单编万吨列车的最大车钩压力随着车位的增大而减小;货车向外侧偏载时,钩压力对偏载货车安全性影响较大,钩拉力影响较小. 当钩压力增大到800 kN和车辆偏载量增大到500 mm时,轮重减载率将会增大到1.00,因此,制动工况更容易出现偏载脱轨事故;相同偏载量下,曲线外侧偏载下的轮重减载率比内侧偏载情形的大;当钩压力由0增大至800 kN时,由轮重减载率确定的横向偏载量安全限值由?421 mm降低至?215 mm,设定重载列车偏载的安全限值的时候应考虑纵向冲动的影响或制动加速度量的控制.   相似文献   

2.
为了研究列车碰撞时爬车失稳响应的影响因素,建立了一种考虑防爬装置间动态耦合关系的防爬吸能装置二维碰撞动力学模型,提出了一种针对防爬齿接触的几何搜索算法, 讨论了基于能量守恒定律的吸能装置纵向阻抗力的获取方法,导出了考虑塑性大变形和动态因素影响的防爬吸能装置阻抗力/力矩表达式.在此基础上,利用编制的计算程序对该装置的动力学性能进行了算例分析.分析结果表明:两防爬齿间的啮合程度与防爬齿本身绝对最大转动角度和防爬齿间的相对最大转动角度密切相关;减小吸能装置的纵向阻抗力和吸能长度,以及增加防爬装置的弯曲刚度均能减小防爬齿的绝对最大转动角度;防爬齿的相对最大转动角度随吸能长度的增加而增加,随防爬装置弯曲刚度的增加呈现先增加后减小的趋势,但与防爬吸能装置纵向阻抗力的变化关系不明显;该计算方法比传统有限元方法在计算时间方面缩短了10%.   相似文献   

3.
根据气体流动理论与多刚体动力学原理,建立了带有列尾装置的列车空气制动系统与列车纵向动力学联合仿真模型,计算了制动系统中空气流动瞬态数值解,获得制动系统特性,同步计算了列车纵向冲动。2万吨组合列车计算结果表明:全制动时安装列尾装置使最大车钩力降低54%,列车纵向冲动明显降低;列尾装置减压量越大,车钩力降低越明显,目前列尾装置减压量固定为50kPa,应根据线路经常使用的减压量确定更合理的值;列尾装置排气速度对车钩力影响较小;列尾装置滞后时间对车钩力影响微小;使用机车替代列尾装置,在大减压量制动时,车钩力将明显得到改善,减压量越小,机车与列尾装置作用效果越接近,当机车减压50kPa制动时,列尾装置与机车作用相同。  相似文献   

4.
运用现场试验与多体动力学仿真相结合的方式,提出一套反映C80单元制动装置真实接触状态的建模与模型验证方法;运用RecurDyn仿真分析平台,通过仿真试验分析法对制动装置的运用性能进行分析预测。研究结果表明:闸瓦靠近轮缘一侧的接触应力较大,2、3位闸瓦下部应力较大,易引起闸瓦偏磨;制动梁立柱连接处存在较大应力,游动、固定杠杆连接部位最大瞬时接触应力分别为137和127 MPa;C80单元制动装置中12号和15号销轴受力最大,在空车与重车制动时销轴所受合力分别超过10和50 kN,现场检修时应着重检查游动杠杆、中拉杆、固定杠杆、制动梁立柱和立式制动杠杆及其连接部;动态运行时,制动梁朝着车辆运行反向窜动导致闸瓦与车轮异常间歇性碰撞接触,且随着运行速度增大轮瓦接触力有增大趋势,易导致车轮非正常磨耗和闸瓦偏磨。研究方法为预测铁路货车制动装置等复杂机构的运行规律与性能预测提供一种新技术,可用于指导C80等铁路货车制动装置的运用检修规程制定与设计改善。   相似文献   

5.
针对时速160 km动车组在单线隧道内列尾横向晃动问题,提出列尾气流涡脱效应引起车体涡激振动而导致列尾横向晃动的机理,研究了车辆悬挂参数改进等相关抑制措施;根据某动力车结构参数,建立车辆横向动力学模型,结合半经验非线性涡激振子模型,实现涡激振动时车辆流固耦合横向动力学计算。计算结果表明:单线隧道内动车组列尾较大的横向涡激力以及涡激频率与车体蛇行频率共振是引起晃车的主要原因;减小横向涡激力、提高车辆蛇行运动稳定性是减小晃车幅值的有效措施;针对该动力车,需避免较低等效锥度的轮轨接触,以防车辆一次蛇行导致涡激振动加剧;当转向架抗蛇行减振器阻尼由800 kN·s·m-1减小到400 kN·s·m-1,涡激共振时车体后端横向振动加速度幅值减小40%;车辆二系横向悬挂采用天棚阻尼半主动控制时,可以有效减小涡激共振区车体横向振动幅值,并能兼顾车体前后端横向平稳性。   相似文献   

6.
通过对凹底平车成形、组装焊接制造工艺和结构难点分析,确定了板材拼接采用焊条电弧焊,其它焊缝主要采用焊丝气体保护和自动化焊接设备及凹底架心盘预制12 mm上挠度和小底架心盘预制5 mm上挠度的制造工艺,并介绍了凹底架组成及小底架组成的焊接原则和顺序.实践证明,该工艺行之有效,凹底平车的组装质量和焊接质量均满足产品图纸及技术条件要求.  相似文献   

7.
在考虑球形钢支座特性和轨道结构传力的非线性特性等因素的基础上,应用ANSYS有限元软件,建立了大跨度长联连续梁桥的线-桥-墩三维有限元计算模型,对列车制动力作用下大跨度长联连续梁桥桥墩的制动力分布规律进行了研究.同时,对影响制动力分配的因素进行了分析.结果表明,制动墩分配的制动力约为2000kN,且制动墩分配的制动力随线路纵向阻力增加而减小,随桥墩纵向刚度的增加而增加,随活动支座摩阻力的增加而减小.  相似文献   

8.
为系统分析纵连无砟轨道与桥上无缝道岔在制动力作用下的受力与变形规律,以武汉—广州客运专线雷大桥铺设博格纵连式无砟道岔为例,将客专18号渡线、纵连式无砟轨道、桥梁和墩台视为整体,建立了岔-板-梁-墩一体化计算模型,分析制动力作用下道岔、道床板、桥墩的受力和变形规律.分析结果表明:在制动力作用下,基本轨制动附加力及位移随道床板伸缩刚度的减小而增大,但板轨相对位移未超过1 mm;限位器和间隔铁的纵向力及心轨、尖轨处板轨相对位移受无砟轨道结构的影响较小,限位器未贴靠,间隔铁力最大未超过13 kN;道床板制动附加力随伸缩刚度的降低而减小,减小量最大达到3 832.9 kN,位移则增大,最多达到17.4 mm;道床板伸缩刚度和滑动层摩擦因数减小对桥墩受力不利;当滑动层摩擦因数μ≤0.2时,取消固结机构,桥墩纵向力减小值接近500 kN.  相似文献   

9.
利用重载列车空气制动与纵向动力学联合仿真系统,仿真计算列车制动过程中的冲动过程,发现纵向冲动是由冲击作用和挤压作用共同形成,最大车钩力就是这两者中力较大的一个.如果最大车钩力是由冲击力产生,则最大车钩力发生在列车尾部,反之最大车钩力是挤压力时,最大车钩力发生在列车中部.车钩间隙对列车纵向冲击力和挤压力都有影响,车钩间隙对冲击力的影响比对挤压力影响更大,对后部车辆的影响更显著;车钩间隙越大,最大车钩力越大.闸瓦摩擦系数对挤压力影响较大,对冲击力影响较小;摩擦系数越大,挤压力越大,发生车位越向前移.  相似文献   

10.
为解决长大列车与连续长弹性轨道的同步仿真问题,以列车通过曲线轨道为例,采用重载列车-轨道耦合动力学模型,分析了压钩力作用下轨道结构与30 t轴重列车的动态特性,提出了长大重载列车与轨道动态相互作用仿真时模型的简化求解方法.该方法将庞大的列车/轨道耦合振动系统以有限数目的三维车辆模型代替,并考虑其轨下基础结构弹性,从而极大缩减系统运动自由度.研究结果表明:列车可简化为单质点车辆模型和三维车辆模型混合的短编组列车,当模型中只包含一个三维车辆模型,且其前、后车辆均以单质点模拟时,计算结果偏低;列车承受2 200 kN压钩力并通过400 m半径曲线线路时,货车最大轮轨横向力和垂向力较多节三维货车编组模型的计算结果分别低估了24%和4%,钢轨横向、垂向位移则被低估了20%和8%;端部车辆采用单质点模型、中部采用三维车辆模型的车辆数至少为3时,才能较为准确地反映中间目标车辆处轮轨作用力和其下部轨道结构的动态特性.   相似文献   

11.
采用二维电磁场理论对直线电机气隙磁场的纵向分量和垂向分量进行求解, 得到了电机牵引力和法向力的解析表达式, 利用直线电机试验台对解析计算方法进行检验, 对比6~18 Hz恒滑差频率下牵引力和法向力随速度的变化; 建立了三悬浮架单节磁浮车辆动力学模型, 仿真对比了车体和悬浮架分别在1、3、5、8 kN冲击力下的振动响应; 计算了单节中低速磁浮车辆牵引特性, 分析了不同滑差频率对车辆牵引性能的影响; 综合考虑电机法向力对悬浮系统的影响和车辆的牵引需求, 提出了变滑差频率控制策略。研究结果表明: 电机牵引特性一般包括恒力区和恒功区, 恒力区初级电流最大值为390 A, 恒功区电压最大值为212 V, 恒力区牵引力变化较小, 恒功区牵引力衰减较快; 滑差频率越小, 电机起动牵引力和法向力越大, 恒力区越短, 反之亦然; 法向冲击力小于8 kN时车辆平稳性指标等级均达到优秀, 但为了减小悬浮系统的负担, 电机法向力应越小越好; 较低的滑差频率使车辆低速段牵引性能更强, 但采用较高的滑差频率有利于提高全速度范围的牵引性能; 在变滑差频率控制策略中起动滑差频率的选择综合考虑车辆的牵引性能和悬浮能力, 速度达到恒功转折点后滑差频率逐渐增大, 该策略使电机恒力区牵引力适中, 恒功区牵引力始终为电机所能发挥的最大值。   相似文献   

12.
为研究五连杆非独立后悬架车辆的操纵稳定性,建立了含后轴弹性转向的线性三自由度操纵稳定性整车模型,运用频域法研究了后轴弹性转向对整车不足转向性能的影响.结果表明:左、右上拉杆的交点相对后轴中心的纵向位置及上拉杆衬套的刚度影响整车的不足转向特性.当上拉杆交点位于后轴之后1.65 m及上拉杆衬套的扭转刚度为1.5 kN.m/rad时,整车的不足转向特性较理想.试验与理论模型仿真结果趋势一致.  相似文献   

13.
为解决气液环簧组合式缓冲器呈现非对称拉压动态特性问题,构建了气液环簧组合式缓冲器动力学模型,基于MATLAB/Simulink软件编制了考虑不同吸能元件特性的车辆冲击动力学模型程序,研究了两辆单车冲击及两列动车组冲击的动态特性。研究结果表明:组合式缓冲器动力学模型既能有效地模拟拉伸状态下环簧缓冲器的线性加载特性,又能较好地模拟压缩状态下气液缓冲器随冲击速度变化的非线性加载动态特性,即组合式缓冲器动力学模型体现了明显的非对称拉压特性;低速与中高速冲击过程中,组合式缓冲器动力学模型及车辆冲击模型可依次完整有效地模拟缓冲器-压溃管-防爬器-车体结构变形产生的缓冲吸能动态过程及磁滞拉压特性曲线;列车冲击速度为5 km·h-1时,最大车钩力及组合式缓冲器最大行程均小于缓冲器阻抗力和行程限值,其压缩加载特性曲线仅呈现出气液缓冲器的加载特性;冲击速度为20 km·h-1时,最大车钩力为2 900 kN,最大行程为534 mm,防爬器已经触发,其压缩加载特性曲线呈现出了气液缓冲器-压溃管-防爬器组成的连续力学特性,此时车体结构未发生破坏;冲击速度达到25~30 km·h-1时,列车开始发生结构破坏,车钩力陡升;全自动车钩与半永久车钩参数选型能够满足冲击速度20 km·h-1以内的列车车体结构安全性。   相似文献   

14.
客运专线斜拉桥梁轨相互作用设计参数   总被引:2,自引:0,他引:2  
采用非线性弹簧模拟桥梁和轨道的相互作用,根据相关文献的试验结果对模拟方法进行验证。以沪昆客运专线上某槽型截面独塔斜拉桥为算例,采用大型通用有限元软件ANSYS建立了塔-索-轨-梁-墩统一的空间有限元模型,对斜拉桥钢轨纵向力的传递规律进行了分析,研究了纵向阻力模型、斜拉桥结构体系、温度荷载与风荷载等设计参数对钢轨纵向力的影响。分析结果表明:钢轨纵向阻力可按理想弹塑性模型进行简化;与漂浮体系相比,塔梁固结可减小约30%的钢轨纵向力;在计算钢轨伸缩力时可按照梁体升温15℃和拉索升温40℃加载;在风速较大的地区,风力引起的斜拉桥上钢轨纵向力可超过60kN。  相似文献   

15.
为了分析轮对蛇行运动的形成机理与能量传递机制, 基于车辆系统动力学理论推导了轮对蛇行运动的能量表达式; 借助轮对运动参数的相位关系和能量表达式, 确定了轮对蛇行运动过程中各部分所做的功及其对应的能量传递路线; 通过数值仿真计算不同参数条件下的输入能量, 对比了踏面等效锥度、轮对质量、一系悬挂刚度与重力刚度等参数对轮对稳定性的影响规律。研究结果表明: 蠕滑力和锥形踏面的协同作用是轮对产生蛇行运动的根本原因, 蠕滑力中的刚度项通过调节纵、横向蠕滑率向轮对系统横向运动输入能量, 蠕滑力中的阻尼项耗散轮对系统的能量; 当输入能量大于耗散能量时, 轮对蛇行运动发散, 当输入能量小于耗散能量时, 蛇行运动收敛, 当输入能量等于耗散能量时, 轮对做等幅周期运动; 增大轮对质量和车轮踏面等效锥度不利于轮对的稳定性, 增大一系悬挂纵、横向刚度对轮对稳定性有利; 踏面等效锥度对轮对稳定性的影响最大, 当锥度由0.15增大到0.20时, 输入能量增大了约9.5倍; 一系悬挂刚度的影响次之, 刚度由75kN·m-1增大到100kN·m-1时, 输入能量减小了约60%;轮对质量影响最小, 轮对质量由1 000kg增大到2 100kg时, 输入能量增长了约1.1倍; 在锥形踏面下, 重力刚度对轮对稳定性的影响可以忽略。   相似文献   

16.
针对桥墩温度梯度引起的桥上CRTSⅡ型板式无砟轨道纵向附加力与变形, 以梁-板-轨相互作用原理和有限元法为基础, 建立了多跨简支梁桥和大跨连续梁桥上CRTSⅡ型板式无砟轨道无缝线路空间耦合模型, 详细考虑了钢轨、轨道板、CA砂浆、底座板及桥梁等主要结构和细部结构的空间尺寸与力学属性; 采用单位荷载法计算了桥墩纵向温差作用引起的墩顶纵向位移, 分析了墩顶位移影响下桥上无砟轨道无缝线路纵向力与位移的分布规律。分析结果表明: 当各墩顶发生均匀位移时, 多跨简支梁桥和大跨连续梁桥上无砟轨道无缝线路纵向力分布规律及其最大值一致, 且随着墩顶均匀位移的增加而线性增大, 轨板相对位移峰值均出现在两侧桥台、台后锚固结构末端以及第2跨和最后一跨固定支座墩顶处; 当墩顶均匀位移为5 mm时, 多跨简支梁桥和大跨连续梁桥上钢轨最大纵向力分别为79.62和79.54 kN, 最大纵向位移分别为4.94和4.91 mm, 轨板最大相对位移均为0.23 mm; 当各墩顶发生不均匀位移时, 钢轨纵向力及轨板相对位移均在邻墩位移存在差异处发生突变, 多跨简支梁桥上固结机构纵向受力大于大跨连续梁桥; 对于高墩桥梁, 需重点关注相邻墩身高差最大处的轨板相对位移、底座板与桥梁相对位移及固结机构的纵向受力。   相似文献   

17.
为准确评估某新型全自动智能轨道巡检车的动力学性能,开展了轨道巡检车动力学数值仿真;轮轨接触采用非椭圆多点接触Kik-Piotrowski算法模拟,车辆系统建模过程中考虑悬挂力元非线性与轮轨接触几何非线性特性等因素,同时考虑车载设备参振影响;针对车轮踏面表面包裹高硬度聚氨酯的特殊结构,利用有限元软件ABAQUS建立了轮轨局部接触模型,采用Mooney-Rivlin橡胶模型模拟了聚氨酯特殊性质,计算了轮轨等效接触刚度;根据有限元计算结果修正了Kik-Piotrowski算法中的相关参数;基于Craig-Bampton模态综合法和多体动力学软件UM建立了车辆-轨道刚柔耦合模型;为验证仿真模型的准确性,开展了实车动力学试验;重点分析了直线和300 m小半径曲线,运行速度10~30 km·h-1工况下巡检车的振动响应。研究结果表明:车辆正常运行时,中间视觉模块垂向最大加速度大于左侧视觉模块垂向最大加速度,横向最大加速度小于左侧视觉模块横向最大加速度,车架最大加速度大于视觉模块最大加速度;车架中部易产生垂向弯曲变形,和视觉模块安装位置有胶垫减振有关;轨道巡检车在直线和300 m小半径区间运行性能整体良好,其中车辆在300 m小半径曲线段内30 km·h-1运行时,轮重减载率最大可达0.92,车架部位振动响应较大,为保证车载设备的安全性和避免车辆脱轨的风险,建议曲线段内检测速度控制在20 km·h-1左右。   相似文献   

18.
为了使真空管道高温超导(HTS)侧浮列车获得更高的起动推力和运行加速度,提高列车高速运行时的稳定性,以真空管道HTS侧浮列车驱动系统为研究对象,建立了直线电机2D仿真模型,在此基础上,采用有限元软件仿真和设计实验,对不同次级下的电机起动推力及法向力特性进行了研究.研究结果表明:不同次级材质及厚度对列车运行有着明显影响,当列车以较高同步速度运行时,选择厚度为2 mm左右的工业纯铝作为电机次级,列车能获得较高的起动推力和加速性能,同时铝次级的低密度特性降低列车总重,并在悬挂方向上提供一定的悬浮力,提高了列车运行的稳定性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号