首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 171 毫秒
1.
利用海事大数据辨识船舶运动模式,能够发现高级别情景意识,提高海事监管技术的效率。提出了一种基于单向距离的谱聚类船舶运动模式辨识方法,充分利用单向距离抗干扰特点,构建了基于单向距离的轨迹相似性度量,得到了轨迹相似度矩阵;以无监督学习方式采用谱聚类算法学习轨迹的空间分布,获取船舶的正常运动模式;以琼州海峡实测AIS数据为样本,研究了进入海口秀英港的船舶运动模式,并分别统计了各模式内及模式之间的距离,获取的4种船舶运动模式与实际相符。实验结果表明:该方法聚类精度高,可以适用于沿海港口、狭水道和船舶交通复杂的区域的船舶运动模式辨识。  相似文献   

2.
研究移动物体时空轨迹局部关键地点时空相似的聚类问题.根据移动物体的运动状态提取轨迹中的有趣地点,利用最小包围盒技术对这些有趣地点进行描述,得到基于有趣地点压缩的轨迹表示形式;然后给出一个时空属性相结合的相似性度量公式,对压缩表示的轨迹进行相似性度量;基于这个相似性度量公式对轨迹进行聚类,聚类方法采用层次聚类法.实验结果表明,本文提出的方法能有效地对移动物体时空轨迹进行聚类,由于采用了增量式的轨迹压缩方法,不仅提高了聚类的速度,而且还实现了增量式的轨迹聚类.  相似文献   

3.
船载AIS数据包含位置、时间和其他属性,属于典型的时空数据,对其开展时空聚类分析有助于挖掘海上交通特征。结合AIS数据的具体特征,提出时间切片化方法,有效约简AIS数据并处理报告间隔不等的问题。在DBSCAN算法基础上综合考虑时间和空间要素,提出船载AIS数据时空聚类算法,并对实际数据开展分析。该方法能更好顾及船舶交通流的时空耦合特征,识别隐含的时空模式,为主管机关开展船舶交通管理、优化通航秩序、保障航行安全等提供一种新途径。  相似文献   

4.
出租车的载客轨迹直接体现了车辆的行驶状态和居民的出行规律,热点载客路径的挖掘为交通管理与规划,居民行为模式发现及出租车载客推荐等具有重要价值. 本文以兰州市3 000 辆出租车载客轨迹为研究对象,提出了基于时空相似性聚类的热点载客路径挖掘算法. 首先,根据出租车的GPS轨迹数据提取出载客轨迹及其核心轨迹;然后,根据提出的相似性度量算法计算核心轨迹的空间相似性、时间相似性及时空相似性,并结合DBSCAN聚类算法对载客轨迹进行聚类;最后,根据聚类结果获取城市热点载客路径的空间分布,并分析了其在工作日和非工作日的差异. 实验结果表明,本文提出的挖掘算法能有效、快速地发现城市热点载客路径的分布.  相似文献   

5.
出租车的载客轨迹直接体现了车辆的行驶状态和居民的出行规律,热点载客路径的挖掘为交通管理与规划,居民行为模式发现及出租车载客推荐等具有重要价值. 本文以兰州市3 000 辆出租车载客轨迹为研究对象,提出了基于时空相似性聚类的热点载客路径挖掘算法. 首先,根据出租车的GPS轨迹数据提取出载客轨迹及其核心轨迹;然后,根据提出的相似性度量算法计算核心轨迹的空间相似性、时间相似性及时空相似性,并结合DBSCAN聚类算法对载客轨迹进行聚类;最后,根据聚类结果获取城市热点载客路径的空间分布,并分析了其在工作日和非工作日的差异. 实验结果表明,本文提出的挖掘算法能有效、快速地发现城市热点载客路径的分布.  相似文献   

6.
为了准确检测船舶的操纵异常行为和降低异常行为误报警率,提出了船舶异常行为的一致性检测算法;在船舶轨迹点中引入能够体现操纵模式的特征,以转向行为与变速行为度量了操纵行为相似性;将空间位置相似性与操纵行为相似性进行组合,定义了船舶综合行为相似性,计算了单个轨迹点与训练轨迹序列中的最近邻特征点,构建了一致性检测的样本序列;为克服样本重叠的类分布情形,改进了一致性检测算法的奇异值度量,并用综合行为相似性计算样本间的非一致性得分,利用单个轨迹点的随机性检验值判断该轨迹点与样本序列的分布一致性;以琼州海峡实测AIS数据作为正常数据,以计算机模拟随机产生异常轨迹和人工自定义操纵异常行为作为异常数据,分别进行异常检测试验。试验结果表明:随机产生的异常轨迹检测正确率为100%,但是轨迹评价集中有一部分正常轨迹被错误划分成异常轨迹,在指定置信度水平分别为99.0%和99.7%的情形下,误报警率分别为0.6%和0.2%,分别低于显著性水平0.01和0.003,因此,利用一致性检测算法能有效检测计算机产生的随机异常轨迹,并可通过指定显著性水平严格控制检测误报警率,能有效检测人工自定义的船舶变速与转向异常行为,而且检测结果能随船舶行为改变而变化。  相似文献   

7.
针对综合客运枢纽出租车停靠点乘客滞留问题,提出一种考虑轨迹相似度的枢纽出租车合乘模型. 以车辆数最小与总里程最短为目标,基于包围面积的轨迹相似度指标在形态上约束合乘后车辆的行驶轨迹. 设计两阶段算法求解此NP-hard 问题,第1 阶段利用kmedoids 方法对乘客需求聚类,第2 阶段设计蚁群算法求解得到乘客匹配方案及合乘行驶路径. 实测数据实验证明:该方法能较好优化车辆数和总里程,减少乘客等待时间;轨迹相似性度量约束能有效提高合乘后路径的JAC值,满足乘客希望合乘路径与原始路径差异最小化的心理.  相似文献   

8.
为准确掌握终端区航空器飞行模式,有效评估、优化飞行程序,首先,针对飞行轨迹点的时空特性,提出基于时间比的自上向下算法压缩轨迹;其次,结合轨迹点的速度和航向特征,建立基于多维属性特征的轨迹相似性模型;最后,应用禁忌粒子群(TSPSO)算法改进和优化模糊C-均值聚类(FCM)算法,并结合终端区的真实飞行轨迹数据对改进聚类算法进行验证.结果表明:轨迹压缩技术极大地降低了计算开销;与传统的FCM算法相比,改进后的聚类算法可以得到更优的满意解,提高飞行轨迹聚类效果.  相似文献   

9.
通过挖掘海量AIS数据, 提出了一种新的航道水深信息获取方法, 即构建船舶安全航行水深参考图; 采用数据预处理的方法对历史与在线的AIS数据进行清洗和修补, 生成船舶运动轨迹; 选定船舶航行区域的时间与经纬度, 采用K-means聚类算法对船舶航行过程中的吃水数据进行聚类分析, 得到不同安全航行区域的船舶分类, 运用BP神经网络模型预测并补齐AIS数据中缺失的船舶最大吃水信息; 分割船舶历史轨迹, 当子轨迹的时间间隔在10~20min时, 采用Spline插值方法对船舶轨迹中的丢失数据进行插值; 采用凸包构建同类船舶的安全航行水深区域图, 将不同吃水类型船舶的安全航行水深区域图合并, 得到船舶安全航行水深合并图; 将不同吃水类型的船舶安全航行水深合并图与航道图叠加, 得到船舶安全航行水深参考图。试验结果表明: 当聚类算法参数设置为4时, 聚类后得到4类船舶, 对应的船舶最大吃水范围分别为0.1~4.8、4.8~6.6、6.6~10.0、10.0~13.0m, 对应的至少可通航船舶吃水分别为1.8、2.4、3.3、5.0m, 说明船舶最大吃水与至少可通航船舶吃水呈正相关关系; 构建的船舶安全航行水深参考图在电子航道图中覆盖了86%的航道, 并与航道图的深水部分重合率为80%, 因此, 构建的船舶安全航行水深参考图能反映航道水深的真实情况, 满足不同类别船舶的导航需求。   相似文献   

10.
针对船舶自动识别系统(Automatic Identification System,AIS)在实际应用中存在错误数据频发、数据丢包等问题,本文提出一种基于秩最小化矩阵去噪的船舶轨迹重构方法,利用去噪实现轨迹重构,同时,实现对轨迹的去噪和缺失补全。该方法通过线性插值实现经度对齐,将轨迹数据转化为轨迹矩阵,从而补全轨迹中的缺失值。由于补全结果存在非常大的误差,因此,引入 PLR(Patch-Based Low-Rank Minimization)算法去噪,消除误差。同时,为进一步提升补全效果,通 过2D-VMD(Two-Dimensional Variational Mode Decomposition)算法将矩阵分解为不同频率的IMF (Intrinsic Mode Function),并分别进行PLR去噪,合并去噪结果,得到最终重构后轨迹。本文以长江武汉段水域船舶AIS轨迹为研究对象,通过实验证明该方法在不同缺失比例以及随机缺失和连续缺失两种情境下具有鲁棒性和较强的稳定性;并与 HALRTC(High-Accuracy Low-Rank Tensor Completion)、TRMF(Temporal Regularized Matrix Factorization)等方法进行比较,结果表明, 该方法相较于HALRTC等方法具有更高的精度,并在高损失率下表现出较好的重构效果。  相似文献   

11.
为了解决船舶轨迹数据的压缩问题, 提出了一种船舶轨迹在线压缩算法; 使用多次滑动推算船位判断方法清洗船舶轨迹, 使用在线有向无环图在干净轨迹上建立压缩路径树并输出采样点; 为了提高轨迹队列和路径树在内存中的查询速度, 使用哈希表对其进行管理; 为了验证提出算法的效果, 比较了真实船舶自动识别系统数据与方向保留算法、道格拉斯-普克算法的压缩时间和误差, 采用可视化方法分析了原始轨迹、清洗轨迹和压缩轨迹。试验结果表明: 在压缩时间方面, 方向保留算法和道格拉斯-普克算法的压缩时间分别约为提出算法的1.1、1.3倍, 说明提出的算法比其他2种算法的处理时间更短; 提出的算法在压缩过程中保留了时间信息, 平均同步欧氏距离误差在任何压缩率下都能保持在10 m以下, 最大同步欧氏距离误差在压缩率为1%时仅有127 m, 而其他2种算法的平均同步欧氏距离误差和最大同步欧氏距离误差不受控制, 会随机变化; 在垂直距离误差方面, 提出的算法与道格拉斯-普克算法在压缩率不小于5%的条件下, 都能保证垂直距离误差小于20 m, 而方向保留算法的垂直距离误差会随机变化; 在显示效果方面, 提出的算法能有效清除轨迹噪声点, 压缩轨迹能够较好地代表原始轨迹的宏观交通流情况。可见, 提出的算法能更高效地保留原始轨迹的形状和时间信息。   相似文献   

12.
船舶自动识别系统(Automatic Identify System,AIS)数据可以实时体现船舶当前时刻的具体动态,采用传统BP(Back Propagation)神经网络模型的船舶轨迹分析预测方法,在计算中直接将航艏向数据纳入模型,没有考虑船舶航艏向在零度附近变动时带来的实际方向变动幅度与数据变化幅度存在较大偏差问题。为解决该问题,在BP神经网络基础上,引入双三角函数变换,同时将正弦值与余弦值纳入模型,将两者相结合,从两维度体现航艏向情况;在拟合预测后进行反三角函数变换和平均处理,构建一种基于改进神经网络算法的船舶AIS轨迹预测模型。选取实例数据进行模型验证,实例结果表明,该模型预测结果比不考虑差异方法的误差均方差更小,大幅降低误差幅度,可更精确地预测船舶轨迹。  相似文献   

13.
分析了船舶AIS数据的时间序列特征与船舶操纵特性, 提出了改进的Sliding Window在线压缩算法; 计算了277艘船舶总计1 026 408个坐标点的AIS轨迹数据, 确定了合适的压缩阈值, 分析了距离阈值与角度阈值对算法压缩率的敏感程度; 根据压缩率图像的阶跃点, 推荐了高、中、低3个档位的距离阈值和1个角度阈值, 对比了Douglas-Peucker算法和改进Sliding Window算法的压缩率与压缩效率。试验结果表明: 随着压缩率的提高, 压缩后所剩下的点越来越少, 数据所保留下来的有用信息也越来越少; 压缩率与距离阈值、角度阈值均呈正比; 经量纲为1化处理的高、中、低档位压缩距离阈值分别为43%、38%、33%船长; 距离阈值为130m时, 角度阈值超过9°后压缩率平稳, 所以推荐角度阈值为9°, 与《海港总体设计规范》 (JTS 165—2013) 中风流压差角8°相接近; 随着距离阈值的增大, Douglas-Peucker算法和改进Sliding Window算法压缩率趋于相近, 当距离阈值为120 m时, Douglas-Peucker算法压缩率仅比改进Sliding Window算法高1.74%;在5种距离阈值的情况下, Douglas-Peucker算法运行所用的平均时间是改进Sliding Window算法的5.39倍; 随着数据量的增大, 2种算法压缩效率的差距更加明显。可见, 改进的Sliding Window算法能在降低压缩风险的同时大幅提高压缩效率, 可以在数据持续更新的状态下一直保持压缩状态, 与普通压缩模式相比, 系统所占用的资源更少, 处理效率更高, 可用于船舶轨迹数据处理、电子海图显示与对船舶关键行为特征提取等方面。   相似文献   

14.
为充分探索船舶自动识别系统大数据在统计决策和安全监管方面的应用价值,系统性地提出了船舶AIS大数据资源管理与分析应用架构。首先,根据船舶AIS大数据特点,设计了船舶AIS大数据处理流程和存储策略,为后续高效计算提供支撑;然后,提出并实现了基于船舶AIS大数据的船舶轨迹重建算法、断面船舶流量统计算法、船舶进出港区识别算法、船舶航行状态分析算法四种基础算法;最后,基于上述计算方法,将船舶AIS大数据应用于断面流量统计、船舶规范使用船载AIS设备行为监控以及船舶规范执行进出港报告情况监控等场景,结果表明船舶AIS数据在统计决策和安全监管方面具有一定的应用价值。  相似文献   

15.
考虑船舶行为的时序相关性,提出了一种基于上下文自编码的船舶行为语义表征(SRCAE)模型;提取船舶经度、纬度、航速、航向等行为特征参量,建立了行为特征序列;借助连续词袋模型将行为特征序列划分为中心船舶行为和上下文船舶行为,利用深度自编码网络构建了船舶上下文行为的语义表征模型,将得到的中心船舶行为编码作为表征向量输出,通过聚类算法构建船舶行为词典;选取长江口南槽交汇水域作为研究对象,利用船舶自动识别系统产生的数据对提出的模型和方法进行了验证。分析结果表明:所提出的SRCAE模型能有效表征船舶行为之间的上下文联系,与传统自编码器和长短期记忆网络自编码器等模型相比SRCAE模型具有更低的表征误差;分别采用k均值(k-Means)、高斯混合模型(GMM)与核k均值(Kernel k-Means)3种聚类算法提取船舶行为词典,与原始数据相比SRCAE模型产生的表征向量更易于区分不同船舶行为模式,其中k-Means效果最优,轮廓系数、卡林斯基-哈拉巴斯指数和戴维森堡丁指数指标分别达到了0.384、18.308、0.531,共产生转向加速、转向减速、直行加速、直行减速等30种复合行为,有效提取了不同行为模式下船舶行为词组合关系。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号