首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
下承式钢桁结合梁在双线对称荷载作用下的近似解   总被引:1,自引:0,他引:1  
陈玉骥 《铁道学报》2008,30(1):48-52
下承式钢桁结合梁桥是适合高速铁路的桥梁结构形式之一,由于受力复杂,难以直接确定其在荷载作用下的精确解析解.本文根据下承式钢桁结合梁的变形特征,将其进行连续化处理, 等效为闭口薄壁组合箱形梁.然后用势能驻值原理导出下承式钢桁结合梁考虑桥面系钢纵梁-混凝土板相对滑移、横梁竖向变形的影响和混凝土板剪滞效应的控制微分方程.根据结构在双线对称荷载作用下的受力特点,假设等效闭口薄壁组合箱形梁的位移函数,求出下承式钢桁结合梁的近似解.利用本文方法对一个4节间简支下承式钢桁结合梁试验模型进行结构的位移和应力计算.通过将本文解与试验结果对比,说明本文公式的正确性.  相似文献   

2.
密布横梁正交异性板整体桥面受力行为   总被引:3,自引:0,他引:3  
采用空间有限单元法和模型试验,研究南京大胜关长江大桥三主桁(拱)密布横梁体系钢正交异性板整体桥面结构的受力行为。研究结果表明:50%以上的桥面荷载通过下弦杆或系梁传至下弦节点,这部分荷载会引起下弦杆或系梁的竖向弯曲。针对三主桁(拱)密布横梁正交异性板桥面结构,提出桥面荷载在3片主桁(拱)中的2次分配的分析方法,第1次桥面荷载分配在3片主桁下弦杆或3片桁拱系梁中进行,中桁与每片边桁分配到的荷载比约为2.3~3.3,支座处大,跨中小;第2次桥面荷载分配通过横联在上弦节点中进行,中桁将0~24%的桥面荷载分配给2个边桁,跨中大,支座处小;经2次分配后,在离支座1~2节间以外的区域,中桁与边桁分配到的总荷载比约为1.0~1.2,靠近支座的区域,中桁与边桁分配到的总荷载比仍为2.5~3.3;只有第1次分配到的桥面荷载引起主桁下弦杆和桁拱系梁竖向弯曲,中桁(拱)的吊杆力、下弦杆和系梁的竖向弯矩约为边桁的2倍以上。  相似文献   

3.
南京大胜关长江大桥采用三主桁多横梁体系钢正交异性板整体桥面结构,结构受力状态复杂。设计制作了一个1∶6的6节间钢桁梁节段模型,研究了实桥受力状态的模拟方法,完成了多种工况下的模拟实桥正、负弯矩区受力状态的加载试验;考察了桥面荷载在3片主桁之间的横向分配,"第一系统"作用下整体桥面的应力分布。结果表明,试验实测结果与实桥的理论分析结果较吻合,说明本文的试验方法可较好地反映实桥整体桥面结构的受力状态;桥面荷载在3片主桁之间的分配是不均匀的,对称桥面荷载在3片主桁之间的分配比例为1.0∶2.0∶1.0,偏载时为1.0∶1.0∶0.0;"第一系统"作用下钢桥面板顺桥向应力沿横桥向分布较均匀,3片主桁挠度较接近,说明三主桁整体桥面结构受力状态合理,整体性好。该研究成果验证了南京大胜关长江大桥的设计计算理论和计算方法的正确性,为该桥的设计提供可参考依据,同时也为整体桥面结构的进一步研究和应用提供了技术储备。  相似文献   

4.
下承式钢桁结合梁桥通过桥面板与主桁结构的连接形成稳定的空间结构,使得桥梁的刚度,特别是面外抗弯刚度得到了有效提高。密布横梁体系的下承式钢桁结合梁桥则取消了纵梁,增加了节间横梁,改善了桥梁结构主桁的受力情况。本文以跨度64 m的密布横梁式钢桁结合梁桥为例,通过静、动载试验和有限元分析,研究了该结构体系的受力特性。研究结果表明:该桥一阶横向自振频率满足规范要求;且由于桥面板与下弦杆形成的整体共同承受外部荷载,在30 t轴重荷载作用下弦杆与横梁受力较小,最大应力分别为26.39,30.73 MPa,并有效减小了下弦杆挠度,实测挠跨比远小于限值;混凝土桥面板以受拉为主,顺桥向最大应力为3.53 MPa。该桥动力性能良好,跨中横、竖向振动特性均满足规范要求,满足30 t轴重重载运输要求。  相似文献   

5.
空间薄壁结构应力测试与分析   总被引:1,自引:0,他引:1  
研究目的:以焦柳线4 m×128 m连续钢桁梁桥荷载试验为依托,论述空间薄壁结构应力测试的理论和方法,在理论计算和试验数据的基础上,分析主桁杆件的受力性能、传力特点、应力状态以及次应力影响。研究结论:通过分析表明:钢桁梁桥的主桁杆件主要承受轴向力作用,受力性质与设计理论一致;桥梁的空间传力作用与杆件间的连接刚度、杆件的位置以及荷载的作用点有关,按杠杆原理简化计算2片主桁间的荷载分配是偏于安全的;按空间梁单元模型计算的下弦杆应力比平面模型计算应力小9.9%~16.4%,"桥检规"中按平面杆系模型计算统计的结构校验系数通常值仅具有参考意义;主力组合下各测试杆件的实际应力小于设计允许应力,并有一定的强度储备;杆件的次应力与节点板和杆件本身的刚度成正比。  相似文献   

6.
对下承式64 m双线钢桁结合梁,考虑钢梁与混凝土板之间的滑移,采用空间梁、板壳单元建立有限元计算模型,钢梁与混凝土板间的连接根据剪力钉刚度,采用弹性连接模拟,通过二期恒载、混凝土桥面板收缩徐变工况的计算分析,研究下承式钢桁结合梁受力特性。计算结果表明,下承式钢桁结合梁中由于混凝土板与主桁下弦杆共同作用承受纵向拉力,钢梁与混凝土板之间的滑移对桥梁结构内力影响较大,设计计算时不适合采用钢梁与混凝土板刚接或换算截面法,建议根据剪力钉刚度钢梁与混凝土板之间采用弹性连接模拟,不同荷载工况可按结构受力对剪力钉刚度进行适当调整。  相似文献   

7.
在整体桥面结构中,下弦杆(系梁)和桥面系受力状态较复杂.桥面荷载在三主桁(拱)间的横向分配较二主桁(拱)复杂.结合在建中的京沪高速铁路南京大胜关长江大桥,进行三主桁道砟整体桥面板桁组合桥受力特性、计算理论和计算方法的研究,主要研究内容和成果如下.  相似文献   

8.
通过对兰新二线全预应力混凝土槽型梁在非对称竖向荷载作用下的足尺模型试验,研究结构在逐级增大荷载作用下的变形、应力变化和裂缝开展及分布等规律,验证了该槽型梁的设计理论和施工质量,为槽型梁受力理论的发展积累了经验。研究结果表明:在竖向非对称荷载作用下,槽型梁具有明显的空间受力特征:腹板不仅发生竖向的弯曲变形,还会发生横向向槽口内的变形,底板则受纵向弯矩和横向弯矩共同作用,而腹板和底板结合处往往受弯扭组合变形共同作用,应力状态复杂;荷载等级越大,扭转变形对结构的影响越大,弯扭组合效应越明显;在一定的荷载范围内,腹板和底板应力的增长随荷载等级的增加近似符合线性增大的规律,在荷载增大的过程中,底板应力变化明显,中性轴会发生明显移动,而腹板中性轴几乎不发生移动;结构的设计理论和施工质量均满足列车营运的要求,并具有充足的安全系数。  相似文献   

9.
研究目的:曲线槽形梁是一种梁、板组合的开口结构,在竖向荷载作用下梁体会产生弯扭耦合效应,道床板会发生双向弯曲和扭转,其受力较为复杂。结合一跨双线铁路曲线简支槽形梁的受力分析,研究曲线槽型梁的力学特性并指导设计和施工。研究结论:曲线槽形梁的受力呈现明显的空间特性,在竖向荷载作用下,曲线外侧主梁下缘承受的拉力较大,曲线内侧相对较小,道床板的剪力滞现象比较显著,支座不均匀沉降10 mm对梁体的受力影响不大。在上部竖向荷载逐渐增加的过程中,主梁上翼缘产生的内向侧移越来越大,槽口逐渐缩小。弯扭耦合效应使槽形梁曲线内、外侧的支反力大小不一,曲线外侧梁端支座反力比曲线内侧大,梁体有向曲线内侧整体平移变形的趋势。  相似文献   

10.
临港公铁两用长江大桥索梁锚固结构采用了新型双拉索钢锚箱,当两根拉索出现一根拉索断索或者换索时,钢锚箱受力出现极端工况,存在破坏的可能性。为探究新型双拉索钢锚箱结构在断索极端状况下的受力性能,根据缩尺理论设计缩尺模型试验进行研究分析。结果表明:在偏载荷载作用下,钢锚箱整体刚度约为450 kN/mm,在2.5倍设计荷载作用下,结构整体仍然处于弹性受力状态;在偏载作用下,偏载侧整体受力大于非偏载侧,锚固板与承压板外缘接触的位置受力较大,偏载侧最容易出现破坏。临港长江桥双拉索钢锚箱具有良好的受力性能,在断索偏载工况下整体仍然处于弹性状态,具有较大的安全储备。  相似文献   

11.
采用ansys有限元软件,结合钢桁架-混凝土组合梁的受力特点和试验时的真实状况,建立桁架组合梁空间有限元模型,将计算结果与试验数据对比以证明此模型的适用性和合理性。计算结果表明有限元模拟与试验结果吻合较好,验证了有限元模型以及编制APDL命令流的正确性。应用编制的命令流得到另外一根不同桁架形式的桁架组合梁在水平低周反复荷载作用下的响应,考察该结构的抗震耗能性能。由滞回曲线分析可得,桁架组合梁在水平低周反复荷载作用下刚度和强度退化不明显,说明该结构具有较好的耗能能力,变形能力强,承载力较高,且其正向承载力比反向承载力高,可为实际工程抗震设计提供参考。  相似文献   

12.
为促进钢-混凝土组合结构的工业化建造,实现钢构件和混凝土构件的工厂化预制、装配化施工,针对传统剪力钉均匀满铺建立的等效刚度理论不能反映群钉集中布置时组合结构受力特性的问题,以跨座式单轨交通为研究背景,设计制作群钉连接装配式钢-混凝土组合轨道梁,进行装配前的钢梁与装配后的组合梁固有频率、荷载-挠度曲线、截面应变曲线对比分析,研究群钉连接组合梁的受力特征。结果表明:钢梁、组合梁实测竖弯固有频率分别为29.9和32.2 Hz,混凝土板的叠合使组合梁固有频率较钢梁提高8%;组合梁内同一截面高度的钢梁和混凝土板变形不协调,混凝土板应变显著大于钢梁,是钢梁的2.5~2.8倍,不满足平截面假定;组合梁实测等效竖弯刚度随作用荷载变化呈非线性特征,简支边界条件下,实测等效竖弯刚度为理论值的0.9~1.1倍,跨中集中荷载小于500 kN时实测等效竖弯刚度大于理论值,而大于500 kN时实测等效竖弯刚度小于理论值。  相似文献   

13.
以京沪高速铁路64 m简支下承式钢桁结合梁桥为对象,采用作者曾经提出的空间板梁单元和常规板壳单元、空间梁单元和空间桁单元离散结构,对其在偏载荷载作用下的受力特性进行空间有限元分析,计算主桁、混凝土板和纵、横梁的应力和位移。结果表明:该桥在偏载荷载作用下符合强度刚度要求。  相似文献   

14.
以1座下承式连续钢桁结合梁桥为例,采用有限元法研究了桥面系的受力特性,考察了中支座区域桥面系受力状态与混凝土板板厚、纵梁抗拉刚度及抗弯刚度的关系;针对纵横梁及混凝土板在中支座区域受力比其他区域突出的问题,探讨解决方案。研究结果表明:在中支座两侧节间内,随着纵梁抗拉刚度的增加,纵梁轴力增加速度逐渐减慢,且低于抗拉刚度的增加速度;随着纵梁抗弯刚度的增加,纵梁竖向弯矩也增加;采用较高的纵梁或增加混凝土板厚对降低中支座区域纵横梁的应力效果并不明显,相对而言,选择合适的纵梁高度并增加翼缘厚度或采用4根小纵梁的方法均可降低该区域纵横梁的应力水平,在中支座两侧节间内再布置横梁时纵横梁的应力可进一步降低。  相似文献   

15.
新建安九铁路跨越武九客专受桥下净空限制,需采用大跨度、低高度桥式结构;同时结合后期维修养护及无砟轨道技术需求,桥面板宜采用混凝土结构,综合考虑本桥采用1-96 m钢-混组合桁架梁跨越武九客专。而96 m钢-混组合桁架梁结构为目前国内同类型桥梁结构最大跨径,并且首次应用于时速350 km无砟轨道。本文结合工程背景详细阐述96 m钢-混组合桁架梁整体设计思路,并对其结构尺寸、受力分析和施工方法进行深入探讨。本工程在安九铁路的成功应用为同类型结构在高速铁路上的推广应用积累了宝贵的设计和施工经验。  相似文献   

16.
在列车制动力等纵向力及竖向荷载作用下的空间变形均会导致钢桁梁桥面系存在复杂的纵向受力和传力,针对大跨度铁路钢桁梁斜拉桥带水平K撑内密肋桥面系,基于解析公式推导、有限元仿真分析研究其受力特性和桥面构件的纵向传力比。在此基础上,基于应力等效准则制作1∶4的试验模型,进行最不利工况下加载试验,研究该桥面系的实际受力和传力特性。结果表明:纵向传力解析式显示,K撑与横梁的纵向传力比仅与结构参数相关,为0.69~2.76的定值,能传递40.83%~73.40%的总纵向力,K撑面积、横梁外伸长度是影响纵向传力比的主要参数;由全桥杆系有限元模型分析的内力结果计算的纵向传力占比介于61.09%~72.53%之间,由局部有限元模型分析的应力结果计算的纵向传力占比介于57.45%~86.60%之间,试验模型实测应力计算的纵向传力占比介于58.16%~87.95%之间,不同方法计算的纵向传力占比存在一定误差,其原因主要源于理论简化、计算模拟及测试误差,但均能反映纵向传力比的基本范围。可见,K撑构件能够有效传递纵向力,降低横梁面外弯矩,改善桥面系结构受力。  相似文献   

17.
变截面箱梁剪力滞及剪切变形效应近似计算方法   总被引:1,自引:0,他引:1  
变截面箱梁因其抗弯刚度沿梁轴向变化,通常采用有限元法分析,本文基于等效刚度及等效刚度比法,提出了一种可同时考虑剪力滞效应及剪切变形效应的,适用于手算的变截面箱梁荷载作用下挠度及剪滞系数的近似计算方法.通过一变截面悬臂箱梁算例分析,与初等梁理论计算结果进行了比较.结果表明:不考虑剪力滞效应及剪切变形效应将使得挠度计算结果...  相似文献   

18.
"桩-柱-梁式支架"是采用桩基对局部地基进行加固,并配合大直径钢管立柱及贝雷片纵梁,共同形成的一种支架形式。建立"桩-柱-梁式支架"施工阶段有限元模型,分析梁体应力及挠度在各施工阶段的变化规律。结果表明:"桩-柱-梁式支架法"施工多跨混凝土现浇梁,能够控制施工过程中梁体截面不出现拉应力,减小梁体的竖向挠度,确保施工完成后梁体的整体线形,提高现浇梁施工质量。同时,施工过程中,支架可重复倒用,大大节约了施工成本。  相似文献   

19.
简要介绍繁忙干线上特大型下承式钢桁梁纵梁活动端支座病害的整治施工  相似文献   

20.
以跨径比(计算跨度与曲线半径的比值)和横隔板数目为参数,对6片钢-混凝土简支曲线组合梁进行了试验研究,得到了曲线组合梁跨中集中荷载作用下的荷载-变形曲线、应变分布和钢梁与混凝土板间的相对滑移规律。试验结果表明:曲线组合梁的抗弯刚度和抗扭刚度均随跨径比的增大而降低,横隔板数目对其受弯性能影响不大,但端横隔板对受扭性能影响较大;有横隔板处切向应变在曲线内侧小,外侧大,无横隔板处则相反;钢梁与混凝土板结合面上的切向滑移随跨径比的增大而增大,横隔板数目对其影响较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号