首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
针对高速列车通过短隧道群所引起的空气动力学效应问题,利用计算流体力学软件Fluent进行了仿真分析。对列车以不同时速通过不同间距的短隧道群时车体表面及隧道中断面的受力情况进行了研究。结果表明:列车通过短隧道群时车体表面最大负压比通过单隧道时大131%,出现在隧道间距与列车长度相当时;随着速度的增大,车体表面的压力变化幅值增大,且车体表面的压力幅值近似与列车运行速度的平方成正比;列车通过短隧道群第1座隧道时隧道中断面压力变化幅值与通过单隧道时接近,通过第2座及第3座隧道时隧道中断面的压力幅值比通过单隧道时增大,且在隧道间距25~100 m时压力幅值随隧道间距增加而增大。  相似文献   

2.
利用计算流体力学软件FLUENT,基于三维可压缩、黏性、非定常流场数值模拟方法,建立隧道-空气-列车三维数值仿真模型.针对高海拔地区隧道空气动力学效应,研究列车以300 km/h的速度运行通过不同海拔隧道时产生的隧道内瞬变压力及车体表面瞬变压力的变化特征,分析大气压和温度等因素对瞬变压力的影响规律,得到海拔高度与瞬变压...  相似文献   

3.
为了研究时速140km/h高速地铁列车以不同运行方式在隧道中运行时的气动效应,采用三维、可压、非定常N-S方程的数值计算方法,对地铁列车由明线驶入隧道及站间运行时产生的气动效应进行数值模拟,分析不同运行方式对高速地铁隧道气动效应的影响。研究结果表明:列车站间运行时,车体表面测点压力峰峰值沿车长方向基本不变;而列车由明线驶入隧道时,车体表面测点压力峰峰值从头车向尾车逐渐降低。2种运行方式下的隧道壁面测点压力峰峰值均在中间风井处达到最小值。并且列车由明线驶入隧道时的最大车体表面和隧道壁面压力峰峰值分别为列车站间运行时的1.37倍与1.49倍。不同列车密封指数下,列车由明线驶入隧道时的车内压力变化均大于列车站间运行时的车内压力变化。因此,地铁列车由明线驶入隧道时的空气动力学效应比站间运行时更加不利。  相似文献   

4.
地铁列车通过隧道时的气动性能研究   总被引:1,自引:0,他引:1  
列车通过隧道时引起的空气动力效应会对列车运行的安全性、乘客乘坐的舒适性等产生不良影响。基于列车空气动力学理论,采用计算流体力学软件FLUENT对某型号地铁车辆通过最不利长度隧道时的空气动力学性能进行数值模拟,得到并分析了地铁列车和隧道壁面监测点的压力时程曲线和分布特征。研究表明:车体表面压力峰峰值、3 s内车内压力波动最大值及隧道内附属物压力峰峰值,与列车速度的平方近似成线性关系;隧道断面净空面积越小,车体承受的压力越大;地铁列车通过隧道时需限速,以达到人体舒适性评价标准。  相似文献   

5.
采用计算流体力学软件FLUENT,在建立3种型号动车组通过隧道和隧道内交会时的空气动力学模型并验证的基础上,分析动车组以不同速度等级在不同净空面积隧道内通过和等速交会时车体表面压力极值;在仿真计算基础上,基于压缩波理论计算公式,给出动车组隧道内通过和等速交会时车体表面压力极值的修正因子。结果表明:仿真计算结果与实车试验结果吻合较好,空气动力学模型能够较准确地反映动车组隧道内通过和等速交会时的压力波变化规律;3种型号动车组隧道内通过和等速交会时,车体表面压力极值均与隧道净空面积成幂指数关系(幂指数约为-1),与车速的平方成正比;动车组隧道内通过和等速交会时,车体表面压力极值的修正因子分别取2.24和5.79。  相似文献   

6.
高速磁浮列车通过隧道过程中将引起剧烈的压力波动,造成司乘人员耳感舒适性、车体及其零部件、隧道衬砌及辅助设施的气动疲劳寿命问题,有必要对磁浮列车高速通过隧道时压力波效应进行研究。采用一维可压缩非定常不等熵流动模型和广义黎曼变量特征线法对单列车通过隧道时车体压力载荷进行数值模拟研究,初步揭示隧道长度、列车速度、阻塞比对车外压力波的影响规律;得出时速500~600 km/h速度下基于最大正负值和最大压力峰峰值的最不利隧道长度;论证了列车通过隧道产生的压力波幅值与列车速度平方成正比的适用范围,总结了压力最值与速度的拟合关系式。本文研究方法和结果可为车体设计选用气动载荷提供参考依据。  相似文献   

7.
《机车电传动》2021,(3):80-85
当高速列车通过隧道时,隧道压力波通过车体变形、密封缝隙和换气风道引起车内压力变化,造成乘客不适。为探明由车体结构变形这单一因素引起的车内压力波动情况,构建了完全密封的车体结构和车厢结构模型,基于STAR-CCM+/Co-Simulations模块,仿真计算了高速列车以350 km/h的速度通过隧道时车体结构的振动位移情况、车内压力变化和车内压力变化率,并与气体状态方程理论数值模拟计算对比。结果表明,车门的振动位移最大;基于流固耦合理论和理想气体状态方程的2种数值模拟方法的结果误差为16.8%,相互验证了计算结果的可靠性;车内压力与车体内的容积成反比,车内最大负压为195.3 Pa,车内压力3 s变化率小于203.1 Pa/(3 s),车内压力1 s变化率小于149.6 Pa/s,满足舒适性要求,为建立多因素耦合作用下的车体模型研究提供帮助。  相似文献   

8.
高速列车通过隧道时诱发车厢内压力波动的数值分析   总被引:6,自引:1,他引:5  
在假定列车车体为均匀多孔车体的基础上,根据一维可压缩非定常不等熵流动理论与广义黎曼特征线法,研制了高速列车通过隧道过程中诱发车厢内外空气瞬变压力耦合的计算方法和计算程序。其中,基于热力学第一定律的“充排法”建立了车厢内压力波动的计算方法,并成功地将该方法推广应用于隧道内会车条件下车厢内压力的计算分析中。通过与国外试验数据的验证表明了本文计算方法与程序的正确性,为准确合理地计算高速列车通过隧道时诱发车厢内瞬变压力提供了可靠的分析工具。  相似文献   

9.
建立了某高速列车4辆编组的列车空气动力学交会模型,模拟列车交会时表面空气压力波的变化,并将仿真分析结果与实车试验结果数据进行了对比分析。分析结果表明,仿真模型能够基本模拟列车实车运行时的压力波变化,仿真分析结果可以为新车型设计与改进提供可靠的参考数据。  相似文献   

10.
近年来,在多条高速线路上对各型高速列车进行了一系列隧道通过和隧道交会试验。现通过对这些空气动力学实车试验数据进行详细分析,获得了高速列车通过隧道和在隧道内交会过程中的压力波特性,以及压力波随列车长度、运行速度和隧道长度等影响因素变化的规律。  相似文献   

11.
以现场试验为主,并辅以仿真计算,针对明线交会、隧道通过、隧道交会等典型工况,研究线间距和隧道截面积对动车组空气动力学及动力学性能的影响。研究表明:明线交会时,线间距从4.4m变化到5.0m对会车压力波有一定影响,但均交会压力波远小于车体容许气动载荷;隧道通过和隧道交会时,线间距对会车压力波影响较小,影响隧道空气动力学性能的主要因素为隧道截面积或阻塞比。线间距改变对动车组动力学性能影响主要体现在车体横向加速度,轮轨力和脱轨系数等指标未见显著变化。  相似文献   

12.
高速列车进入有缓冲结构隧道的压力变化研究   总被引:2,自引:0,他引:2  
采用高速列车空气动力学模型实验对高速列车在进入带缓冲结构隧道过程中瞬变压力传播机理进行研究。实验结果表明,缓冲结构能够减缓隧道内瞬变压力。其原因在于:缓冲结构横断面积逐渐由大变小,阻塞比逐渐由小变大,延长了压力上升时间,降低了压力梯度;另一方面,由于压缩波在缓冲结构和列车、隧道之间多次反射,降低了压力峰值。在M.S.Howe提出无缓冲结构下最大压力波变化理论基础上提出有缓冲结构时隧道内最大压力和最大压力梯度变化规律计算公式。所得结论可为隧道空气动力学研究提供参考。  相似文献   

13.
列车交会空气压力波研究及应用   总被引:9,自引:2,他引:7  
列车交会空气压力波是高速轨道交通特有的空气动力学问题,它对高速轨道运输行车安全、旅客舒适度均产生重大影响。讨论了列车交会空气压力波数值计算方法、动模型及在线实车试验技术,论述了非对称滑移网格技术。根据对我国提速,200km/h速度等级及其以上高速列车进行计算、试验和理论分析,建立了列车交会压力波与运行速度、复线间距、车体宽度、附面层、外形以及编组方式等之间的关系,讨论了列车交会行车安全评估方法,提出了我国既有线上各种列车车体和车窗结构承受瞬态交会压力冲击安全运行极限值。  相似文献   

14.
基于风压载荷空气动力学控制方程,利用计算流体力学软件FLUENT,分析高速列车在不同线间距隧道内,以不同速度级等速交会时的车体表面风压和受到的气动力;将隧道内交会时受到的气动力以时程荷载的形式施加到车辆动力学模型中,分析其对各项车辆动力学性能的影响规律,并进行安全性和平稳性指标分析。结果表明:列车在隧道内等速交会时,头车所受的气动阻力、升力、横向力最大;高速列车表面所受的风压极值与速度的2.2~2.3次方成正比,所受的气动阻力、升力、横向力与速度的1.8~2.4次方成正比;隧道内高速交会对车辆安全性指标影响不大,仅在交会瞬间产生较大的车体横向振动,当运行速度达到400km·h^-1时各项安全性、舒适性指标均满足限值要求。  相似文献   

15.
高速列车通过隧道时会产生一系列特定的空气动力学效应,如压力波动、出口处微压波、洞内行车阻力增大等。如采用普通铁路隧道设计参数,这种效应将十分明显,甚至威协正常运营,这已被日本、欧洲等高速铁路发达国家的运营实践所证实。为此,必须采取技术措施解决这一问题。同时,沉管隧道不同于一般山岭隧道,加这通过高速列车,又对其有着特殊要求。因此,本文着重介绍高速铁路越江沉管隧道的空气动力学效应及其指标的确定。  相似文献   

16.
基于可压缩流体的纳维—斯托克斯方程和RNG k-ε模型,以由头车、中间车和尾车3辆车编组的某高速列车1∶8风洞试验模型为研究对象,采用计算流体动力学软件(CFD),建立包括车体和走行部的三维非结构化列车表面离散网格模型和列车与隧道、列车与明线空间的组合计算网格模型,研究高速列车通过隧道时气动阻力的时变特性和规律.结果表明:高速列车在车尾刚进入隧道人口时其气动阻力达到最大值,为同样工况下明线运行时的2.5倍;高速列车完全进入隧道后,其气动阻力在一段时间内处于相对平稳期,为明线运行时的1.8倍;之后在隧道压力波的作用下,高速列车的气动阻力会发生准周期变化,变化幅度接近明线运行时的60%;在隧道长度大于高速列车长度的前提下,高速列车通过不同长度隧道时,其进入隧道时的气动阻力最大值均比较接近,而且在隧道内运行时的气动阻力变化特征和幅值也基本相同.  相似文献   

17.
建立了高速列车在隧道内和明线上交会的数值计算模型。利用有限体积法求解三维、可压、非定常N-S方程和k-ε两方程湍流模型,通过滑移网格技术实现列车的相对运动。分析了列车在隧道内和明线上以350 km/h等速交会过程中车体表面压力、气动荷载的变化规律。研究发现:列车在隧道内交会时,其车体表面压力比在明线上交会时约增加6 kPa,且车体表面压力的波动幅值是明线上交会时的2倍;交错车体表面的负压值比未交错表面的负压值大1.5kPa;气动力(矩)比在明线上交会时略小;头车、尾车气动阻力的变化规律与单车过隧道时相似,但阻力的变化峰值约是单车过隧道时的2.5倍。  相似文献   

18.
采用数值模拟方法,对有无竖井条件下列车高速通过隧道时车体压力的变化过程进行模拟,研究竖井对车体压力的作用机理,基于车体压力变化幅值对竖井面积、数量和列车速度等因素进行分析.结果表明,设置竖井后隧道内的压力波及其传播体系以竖井为界分为前后2个不同的阶段,列车在不同阶段内行驶时车体压力独立地遵循各自的变化规律.减小竖井面积和增加怪井数量均有助于降低车体压力的变化幅度,当竖井面积小于0.5倍隧道有效断面面积时,竖井可有效降低车体压力的变化幅度;增加竖井数量虽然能降低车体压力,但会增多车体压力的变化次数;竖井对车头的降压效果最为显著,其次为车中和车尾;对于不同的列车速度,竖井对车体都有一定的降压作用,且竖井的降压效果随着列车速度的提高而增强.  相似文献   

19.
高速列车通过隧道时隧道内压力变化的试验研究   总被引:2,自引:0,他引:2  
通过以空气为流体的高速列车模型试验,研究高速列车通过隧道时产生的压力变化.试验结果表明了隧道内产生的压力变化与列车速度、阻塞比之间的关系.  相似文献   

20.
随着列车运行速度的提高,隧道空气动力学问题越来越突出。2005年5月在遂渝线进行了高速列车过隧道试验,对列车和隧道内空气压力变化、隧道内列车风和隧道口微气压波等参数进行了测试。结果表明:隧道内列车风风速与列车运行速度成线性关系,并且与车头和车尾的外形、列车长度、隧道截面面积及其长度等因素有很大关系;隧道壁面压力近似与列车运行速度的平方成正比;同等速度条件下,钝头型的25T提速客车引起的隧道壁面压力变化幅值比流线型动车组的大38.6%;由于双层集装箱列车较高且集装箱间的间距较大,致使同等速度下引起的隧道壁面压力变化最大;隧道入口的压力变化明显大于隧道出口的压力变化,在隧道口附近,三维效应非常明显,且每种车型均不同。因此,将列车和隧道耦合起来设计出合理的隧道和列车截面形状,是减小隧道空气动力学效应的有效途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号