首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究不均衡闸瓦压力对重载机车轮轨动态行为的影响,以我国实际运营中HXD型六轴重载机车为研究对象,在多体动力学软件UM中建立综合考虑多种非线性力学关系重载机车模型,将制动过程考虑仅有闸瓦压力作用。仿真结果表明:在直线运行条件下紧急制动状态时,当1位轮对出现不均衡制动故障,对重载机车动态行为影响最甚,此时1位轮对横移量、摇头角均是最大幅值,1位轮对较其他轮对,轮对横移量、摇头角最大分别增加46.97%和86.73%;车辆过曲线时分别在1位内轮、3位外轮正常制动工况下,对车辆动态行为影响较大,且各考核工况同样以1位轮对响应最为剧烈。由此可见,端位轮对在所有可能出现故障的轮对中安全隐患较大,故障时出现轮缘贴靠的可能性更大。  相似文献   

2.
为了研究重载列车在惰行和制动工况下通过曲线时的轮轨接触特性,采用数值方法建立单自由度车辆和全自由度车辆混合的列车动力学模型,对比分析了惰行和制动工况下列车曲线通过时的运行安全性、车轮磨耗分布特征、轮轨滚动阻力特性影响。结果表明:考虑车钩负载效应和闸瓦贴靠车轮作用的列车模型在曲线制动工况下的轮轨横向力和脱轨系数指标均比惰行工况时略差,但轮重减载率指标几乎相当;由于制动时闸瓦压力增大了轮对的摇头约束,导致通过曲线时导向车轮磨耗功率的动态分布区域比惰行时更靠近轮缘处;制动工况下的牵引比率随曲线曲度线性变化的范围比惰行工况时大,且随着制动强度的增大,牵引比率也逐渐增大。  相似文献   

3.
基于Abaqus软件,建立闸瓦-车轮-轨道三维有限元模型,设置车轮钢材料的接触属性和材料属性,对重载列车紧急制动过程进行热力耦合仿真;基于损伤参量的疲劳裂纹萌生寿命预测模型,分析重载列车整个紧急制动过程中车轮踏面瞬态温度分布、径向和切向应力分布以及弹性和塑性应变分布,并通过计算车轮踏面损伤参量判断疲劳裂纹萌生位置,预测不同轴重和不同闸瓦压力对车轮踏面疲劳裂纹萌生寿命的影响。结果表明:重载列车紧急制动时,车轮踏面上制动温度越高则相应热应力、热应变也越大,尤其当踏面最高温度超过100℃时,热负荷对裂纹萌生的影响更加显著;车轮踏面上裂纹萌生更多的是由剪应力和剪应变引起,轮轨接触斑内是最先萌生裂纹的区域;轴重为30 t、闸瓦压力为21 kN、初速度为100 km·h~(-1)时损伤参量最大为3.801 1,最大循环制动次数仅有236次。  相似文献   

4.
用自主研制的纵向动力学仿真软件及多体动力学仿真软件SIMPACK,建立大秦线1+1编组的2万t重载组合列车从控机车纵横向耦合动力学模型,并以实测线路不平顺为输入,验证模型的准确性.应用该模型,分析常用全制动和紧急制动工况下LOCOTROL延迟时间为2.0和2.5s时从控机车的横向运行安全性.结果表明:在常用全制动和紧急制动工况下,从控机车的轮轨横向力、脱轨系数和轮重减载率等指标随时间的变化规律基本相同,车钩力对机车A节各项安全指标的影响较B节明显;同一工况下,LOCOTROL延迟时间越长,从控机车的轮轨横向力和脱轨系数越大;紧急制动工况下从控机车的轮轨横向力、脱轨系数均比常用全制动工况大;为确定合理的车钩自由角,需要综合考虑机车的横向运行安全性和相邻机车车体之间的振动耦合作用.  相似文献   

5.
重载列车轮轨动力作用分析   总被引:6,自引:2,他引:4  
本文运用有限元法,建立了重载列车轮轨动力作用分析模型,该模型考虑了钢轨初始不平顺引起的轨道结构竖向振动及由牵引力和制动力引力的轨道结构纵向振动。在模拟列车制动力作用时,文章考虑了列车初始制度速度,制动距离及闸瓦制动波速对轨道结构的影响,运用这一模型,作者对京沪线5000t重载列车对轨道结构的影响,特别是牵引力和制动力对纵向力的影响进行了模拟,取得了满意的结果。  相似文献   

6.
钢轨润滑以及轨顶摩擦控制是重载铁路减轻钢轨侧磨以及伤损的有效措施之一。本文对比分析不同摩擦系数条件下,机车的曲线通过性能。分析结果表明,曲线外股钢轨轨距角处的润滑,有利于减小轮轨磨耗,与此同时,减小了机车的蠕滑导向力矩,从而增大了导向轮轮对冲角,轮轨横向力亦呈现增大趋势;曲线内轨轨顶摩擦系数适当减小对减小轮轨横向力起到积极作用。轮轨纵向蠕滑系数的增大,可明显提高轮对导向力矩,有利于轮对趋于径向位置,并减小横向力和轮对冲角,使得机车的曲线通过性能得到显著改善。  相似文献   

7.
为了探明重载机车车钩自由角对机车运用安全性能的影响规律,运用大系统动力学理论,仿真计算相同制动速度不同车钩自由角、不同制动速度相同车钩自由角时的轮轨动态安全性能标.结果表明:在相同初始制动速度(80 km·h~(-1))条件下,当车钩最大自由角为3°时,轮轨动态安全性指标满足运行要求,轨距动态扩大量较小,轮轨接触点分布正常;当车钩最大自由角为4°时,则轮轴横向力不能满足安全运行要求,轨距动态扩大非常明显,出现了轮缘和钢轨侧面接触、轮轨接触点集中等异常现象.车钩最大自由角为3°时的制动初始速度的安全限值为82 km·h~(-1).计算结果与实际运用得出的结论一致.  相似文献   

8.
为研究我国某万吨重载铁路既有线提速的可行性,开展列车通过不同线路条件时轮轨动态相互作用特性的仿真和试验研究。建立万吨重载货车在线路上运行的动力学分析模型,计算分析其空载、满载以及直线、曲线通过等多种工况下,不同运行速度对轮轨动态相互作用的影响;对万吨重载列车开展了提速动力学试验,测试重载列车提速通过时的轮轨动态相互作用特性。结果表明:万吨重载列车的轮轨动态相互作用均随车辆运行速度的增加而增大,曲线线路区段产生的轮轨相互作用更加剧烈,但均小于安全标准限值且有一定的安全余量。  相似文献   

9.
为研究重载货车振动特性,以我国轴重最大的某型30 t轴重重载货车为研究对象。首先采用有限元方法建立了轮对的弹性模型,进而在UM软件中进行总体集成,建立了考虑与不考虑轮对弹性的货车刚体模型以及刚柔耦合振动模型,给出了柔性体轮对的自由振动模态,以及柔性轮对的建模方法,对比分析了轮轨接触关系以及2种模型不同位置的振动加速度。结果显示,柔性轮对的弹性结构不仅能缓和轮轨之间的刚性作用,而且还缓和了中央悬挂以下的刚性振动,由于中央悬挂发挥了较好的隔振性能,故轮对柔性建模对车体、摇枕的振动影响较小。因此开展轮对柔性振动研究及其动态影响对于重载铁路车辆装备设计具有重要意义。  相似文献   

10.
机车牵引状态下曲线通过导向特性研究   总被引:1,自引:0,他引:1  
考虑车轮与钢轨的运动特性及轮周牵引力,推导出机车在牵引状态下通过曲线时的轮轨蠕滑率计算公式,并对曲线通过时的轮轨横向动态相互作用特性进行仿真计算与分析;同时研究牵引力大小对转向架导向性能的影响,对比分析了机车牵引与惰行状态下的导向性能。理论仿真分析结果表明:牵引力可以改变轮轨纵向蠕滑力的大小和方向,与惰行工况相比,牵引状态下的轮对导向力矩有所减小,轮对的自导向能力减弱,不利于曲线通过;提高牵引力,总轮轨蠕滑率将很快达到饱和状态,牵引力越大,轮轨纵向蠕滑力越大,两侧纵向蠕滑力差值越小,机车轮对自导向能力越差,轮对冲角增大,而轮轨横向蠕滑力越小;当牵引力增加到一定程度时,总轮轨蠕滑率超过极限状态,曲线通过时两侧轮径差太小而出现打滑和空转的现象。  相似文献   

11.
随着机车轴重的不断增加,轮轨磨耗加剧,重载铁路小半径曲线上的钢轨波磨越发普遍。文章基于车辆系统动力学理论,建立C_0-C_0型30 t轴重重载机车模型,利用MATLAB软件模拟小半径曲线上的钢轨波磨作为外部激扰输入,研究了小半径曲线钢轨波磨对机车曲线通过安全性的影响。结果表明,轮轨垂向力随着波磨波深的增大而增大,随着波长的增大而减小,当机车以不低于70 km/h的速度通过小半径曲线钢轨波磨区间时,极有可能出现轮轨瞬时脱离现象。为了保障机车曲线安全通过,以动态轮重减载率、脱轨系数和倾覆系数为评价指标,针对小半径曲线上不同波深和波长的钢轨波磨,给出了行车速度建议:对于波长为300 mm、波深为0.8 mm的钢轨波磨区间,机车安全通过速度不能超过70 km/h;当波磨进一步发展,波深达到1.0 mm时,机车安全通过速度不能超过60 km/h。  相似文献   

12.
基于列车纵向动力学理论和车辆—轨道耦合动力学理论,建立考虑钩缓系统中车钩纵向、横向和垂向作用力的重载列车—轨道耦合动力学模型。以机车牵引万吨列车为考核工况,分析牵引和制动时机车的受力特点,研究牵引力、制动力及车钩力对机车运行性能的影响过程和影响程度,并对理论模型进行试验验证。结果表明:在牵引、电制动及紧急制动工况下,直线线路上机车的轮重分别较惰行工况降低了约13,7和4kN,单纯的牵引或制动力可降低轮轨横向蠕滑力,间接造成轮轨横向力的小幅增大,但轮轴横向力基本不变;车钩力可通过车钩摆角产生横向分量,并传递到轮轨界面,改变轮轴横向力的整体变化趋势;若车钩偏转3°,在电制动工况下,前部机车承受的压钩力较大,引起的轮轴横向力增幅达18kN,在紧急制动工况下,机车上的压钩力幅值小,引起的轮轴横向力在8kN以内。  相似文献   

13.
对大秦线列车管减压量偏大的重载组合列车的制动施加时间、地点、线路数据和机车数据进行了统计分析,确定环境温度升高是引起列车管压力上升的主要原因,通过理论计算的方法研究了不同条件下环境温度升高对列车管压力变化的影响,进而分析其对制动缸压力、闸瓦压力、车辆制动力、列车制动力的影响,结合试验数据分析对车钩力产生的影响,并论述纵向力增大可能带来的隐患,针对这种现象提出了解决建议。研究表明重载组合列车在环境温升较大的中午时刻或者低温季节经过长大隧道时会引起列车管压力上升,造成列车施加空气制动时减压量变大,进而导致列车制动力增强。  相似文献   

14.
基于ALE (Arbitrary Lagrangian Eulerian)有限元建立稳态轮轨滚动接触的三维有限元模型.利用该模型计算和分析重载轮轨滚动接触的黏着特性,并研究不同速度等级对重载轮轨黏着蠕滑特性的影响.用该模型对重载大功率机车车轮在轨道上从制动、惰行到牵引过程进行计算,得到了这一过程中轮轨接触状态的变化规律和黏着特性曲线.在重载大功率机车从制动、惰行到牵引的过程中,轮轨纵向摩擦力由反方向饱和状态逐渐转变成牵引方向饱和状态,而轮轨横向摩擦力始终呈反对称性分布,其最大值位置先是逐渐靠近接触斑中心,然后又逐渐远离之;摩擦力矢量呈旋转分布,其方向从与运动方向相反逐渐变为与运动方向相同,其旋转中心从轮缘附近逐渐进入接触斑,随后又逐渐向轮缘一侧移动;当轮轨纵向蠕滑率较小(≤0.003)时,黏着力随纵向蠕滑率的增加而近似线性增加,但运行速度对此影响不大;进入大蠕滑率(>0.003)区域后,黏着力随蠕滑率的增加而减小,并且速度越高,黏着力降低得越快.  相似文献   

15.
文章利用多体动力学软件SIMPACK建立了200 km/h速度等级机车动力学模型,分析了两种形式竖曲线的半径对垂向加速度、轮轨垂向力和轮重减载率的影响,并且根据现行铁道机车车辆动力学性能评定规范加以评价。结果表明:随着竖曲线半径的增大,车体垂向加速度逐渐减小,并趋于平稳,竖曲线半径对轮轨垂向力和轮重减载率影响较小;考虑轨道随机不平顺时,根据车体垂向加速度判断,凸形竖曲线略好于凹形竖曲线;随着半径的变化,机车轮轨垂向力和轮重减载率变化不大,且均属优良范围。  相似文献   

16.
前言研究的目的是为了提高闸瓦和轮箍的使用寿命和应用价值,提高制动安全及减少更换消耗部分,从而节约费用。一、闸瓦材料对制动机构造的影响闸瓦的制动作用愈强,制动力愈大。闸瓦作用于车轮上发生摩擦力(图1)的极限值是车轮与钢轨间的粘着力。当制动力超过粘着力,轮对将被抱闸。容许的制动减速与应用闸瓦材料及闸瓦构造类型有关。制动力为闸瓦压力和摩擦系数的乘积。车轮  相似文献   

17.
通过MATLAB软件模拟平顶型不平顺,作为机车模型的外部激扰输入,根据机车动力学理论,以机车轮轨动力指标为依据,运用SIMPACK多体动力学仿真软件,分析了小跨度桥的局部平顶型不平顺的幅值A、与不平顺波长相关的系数K和平顶长度L对轮轨系统动力性能的影响,给出了80~160 km/h速度下,轮轨垂向力、轮重减载率等重要指标,确定出危险速度。仿真结果表明,平顶型不平顺的幅值A和不平顺的系数K的增大,对机车的轮轨垂向力最大值和轮重减载率最大值都有不同程度的影响;但平顶长度L对机车的轮轨垂向力最大值和轮重减载率最大值几乎没有影响。  相似文献   

18.
为探明长编组、大轴重运输条件下车辆和轨道的动力相互作用问题,基于现场试验方法,研究了2万t重载列车制动与起动条件下的轮轨动力特性,初步掌握了大轴重重载列车制动与起动条件下轮轨作用力、轨道结构位移和振动加速度的响应特征和变化规律,揭示了重载列车制动与起动状态对轮轨性能影响的差异。研究结果表明:列车制动对轮轨垂向力和轨道结构振动加速度的影响较大,其影响随制动时间的增加而逐渐减小;列车起动过程中轮轨垂向力和轨道结构振动加速度随起动时间的增加而增大;列车制动和起动对轮轨横向力及轨道结构位移的影响不大;由于列车制动加速度大于起动加速度,列车制动时的轮轨作用力、轨道结构位移和振动加速度均比起动时要大。  相似文献   

19.
为适应铁路重载牵引的需要,从1998年起,徐州北机务段配属了28台DF8B型内燃货车机车.该型机车的基础制动装置采用了QB-2型和QB-2S型单元制动器.这2种制动器结构基本相似,主要由制动缸装配、箱体、闸瓦间隙调整机构、螺杆复位机构、闸瓦托、闸瓦支承、闸瓦等组成.  相似文献   

20.
重载列车车轮踏面制动是一个复杂的动态接触热—机耦合问题。文章利用有限元分析软件ABAQUS建立了重载车轮踏面制动的瞬态热—机耦合有限元模型,对单闸瓦踏面制动过程进行了紧急制动工况的数值仿真,并利用重载货车车轮制动热负荷试验结果对模型进行验证。利用该模型分析了不同工况下重载车轮紧急制动过程中的热负荷及热应力情况,为研究大轴重车轮踏面制动热负荷极限和热损伤问题提供了理论技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号