首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以某斜拉-连续刚构组合梁桥为例,通过建立列车与桥梁的车-桥耦合动力分析模型,并根据势能不变值原理及形成结构矩阵的"对号入座"法则,导出了车桥系统的空间振动矩阵方程。计算了国产CRH2型列车以不同速度通过该组合体系桥梁时的空间振动响应,基于列车走行性评价指标,检算该桥是否具有足够的横向、竖向刚度及良好的运营平稳性等动力特性,并对不同车速下桥梁响应的变化规律进行了研究,所得结果可为同类桥梁的相关评价分析提供参考。  相似文献   

2.
多跨斜交简支T梁桥车桥耦合振动分析   总被引:1,自引:0,他引:1  
针对简支T梁的受力特性,采用梁壳组合模型模拟简支T梁,分别建立列车一斜交桥梁系统和列车一正交桥梁系统的空间耦合动力学模型.分析CRH动车组以不同速度分别通过多跨斜交简支T梁桥和多跨正交简支T梁桥时机车车辆及桥梁的动力特性.结果表明:CRH动车组通过正交桥和斜交桥时,机车车辆的振动响应随车速提高而增大,而且斜交桥的机车车辆振动响应大于正交桥;当列车通过斜交桥的车速不超过200km·h-1时,列车的乘坐舒适度达到"良好"标准以上,但乘坐舒适度较通过正交桥时差;列车通过斜交桥时安全性能够得到保障;斜交桥的各项动力响应均在容许值范围以内,斜交布置虽对桥梁的横向振动非常不利,但对抑制桥梁中心线处的竖向振动有利.  相似文献   

3.
新建郑州至济南高速铁路山东段黄河特大桥采用预应力混凝土部分斜拉桥体系,桥梁跨度布置为(108+4×216+108)m,设计速度350 km/h。建立列车-桥梁空间振动分析模型,对桥梁的自振特性进行分析,并考虑了长、短波不平顺与温度荷载不同组合工况下桥面初始变形的影响,当列车以不同速度通过时,对列车和桥梁的动力响应进行了评价。计算结果表明:桥梁前2阶振型表现为塔梁横弯,塔梁竖弯相对滞后,而塔梁纵飘出现最晚;当列车分别以设计速度和检算速度通过该桥时,列车与桥梁的动力响应均满足要求,列车乘坐舒适性达到"良好"标准以上;各工况下列车和桥梁的动力响应差异不大,桥面初始变形对车桥耦合振动的影响主要体现在变形幅值上。  相似文献   

4.
济青高速铁路(40+70+70+40) m槽形连续梁是国内外跨度最大的高速铁路双线预应力槽形连续梁。为分析其列车通过时的动力性能,建立列车-轨道-槽形连续梁动力相互作用模型,编制铁路列车-轨道-桥梁耦合动力仿真软件RTTB,利用现场实测数据验证仿真软件的工程可用性,对动车组与货车过桥时系统的动力响应进行数值计算和评估。结果表明:CRH2动车组、CRH3动车组、C64货车在设计速度范围内以单列或者双列的形式通过桥梁时,车辆的安全性指标均合格,平稳性指标为优秀,桥梁的各项动力响应指标均满足规范要求,槽形连续梁结构设计合理,满足设计要求。  相似文献   

5.
"抱轨"行驶是跨座式单轨交通的一个显著特点.针对单轨列车与双层桥面钢桁梁斜拉桥的车桥耦合动力性能,以主跨468 m牛田洋大桥为工程背景,基于ANSYS及SIMPACK等软件建立车桥空间耦合动力模型开展联合仿真,研究不同行车速度、不同列车特性下的车、桥动力响应,并对行车安全性等进行了评估.研究结果表明:列车在通过桥梁时的竖向动力效应较弱,位移冲击系数约在1.1以内,且桥梁竖、横向位移响应均与车速无显著联系;竖向位移随过桥车辆数目的增加而增大,横向位移在单线行车时明显大于双线对开工况;桥梁与车体振动加速度均随车速递增,且车体横向振动程度大于竖向;跨座式单轨列车在列车正常行驶速度100 km/h以内通过该大跨度斜拉桥时,桥梁的动力性能优良,桥上列车具备良好的乘坐舒适性.  相似文献   

6.
将空气流场视为黏性、可压缩的非定常流,对高速列车和跨线桥梁模型进行适当简化,以沪昆线上某(112+80+32)m预应力混凝土独塔斜拉桥为例,基于大型计算流体力学软件Fluent,采用滑移网格法建立高速列车和跨线斜拉桥流场计算模型。分析了列车以350km/h速度从斜交跨线斜拉桥下穿过时,桥梁底面压强分布情况。通过积分换算出列车气动效应对桥梁产生升力、阻力和扭矩时程。将该气动力时程施加至斜拉桥空间动力模型,研究运营阶段斜拉桥动力响应。研究表明,高速列车尾流对斜拉桥的气动力作用大于列车头,列车正上方梁体所受气动力最大;列车风对运营阶段斜拉桥影响极小,可忽略不计;若跨线桥为质量惯性较小的钢桥,列车气动力对其影响仍需进行相应研究。  相似文献   

7.
针对桥上无缝道岔,运用有限单元法,建立钢轨-岔枕-桥梁系统空间振动分析模型。运用弹性系统动力学总势能不变值原理及形成矩阵的“对号入座”法则,建立了列车-道岔-桥梁系统空间振动方程组。以温福客运专线田螺大桥为例,拟定桥上铺设了由2组38号道岔组成的单渡线,计算“中华之星”电动车组,按一动四拖的编组方式,以200 km/h的速度直逆向通过时,列车-道岔-桥梁系统空间振动响应,并与列车通过路基无缝道岔和桥上无缝线路的动力响应进行对比。计算结果表明,桥梁导致钢轨和岔枕的位移增幅较大,列车动力响应有所增加,对道岔振动加速度和轮轨力影响不显著;道岔导致桥梁振动加速度小幅增加,而列车动力响应显著增大。  相似文献   

8.
以沪昆高速铁路长沙段三跨(112+80+32)m独塔斜拉桥为研究对象,利用自主研发的车桥耦合振动分析软件TRBF-DYNA开展斜拉桥维修卸索施工期间的桥梁动力响应及列车走行性分析。采用多刚体动力学方法建立31个自由度的车辆模型,采用有限元方法建立轨道—斜拉桥模型,轮轨间竖向采用Hertz非线性接触模拟,横向采用蠕滑理论模拟。分析结果表明:卸索对桥梁刚度的影响不大,对桥梁自振频率的影响在5%以内;卸索期间车致桥梁振动响应略有增加,其中桥面主跨竖向振动位移最大增加了10.8%,但其他参数增幅较小;桥塔以纵向振动为主,不同卸索工况对桥塔纵向振动影响显著;各卸索工况主要影响车辆竖向加速度,对列车其他运行安全性指标影响较小;在卸索期间,列车的行车安全性和平稳性指标均满足规范要求。  相似文献   

9.
为充分反映列车与桥梁的动力相互作用,建立三维车辆模型及桥梁有限元模型,依据轮轨接触关系形成车桥耦合动力系统模型;考虑轨道不平顺的随机激励作用,求解车桥系统动力方程,得到桥梁节点的振动响应。在此基础上,计算桥梁构件单元的动应力响应时程。以CRH2型动车组通过某跨度为80m的下承式钢桁梁桥为例,计算分析各局部杆件的动应力时程及不同杆件的应力动力放大系数。结果表明:所给出的计算方法考虑了桥梁横向振动的影响以及轨道不平顺激励,能够真实反映列车荷载作用下桥梁局部构件的动应力响应;在列车荷载作用下下承式简支钢桁梁桥各类杆件中的危险杆件并不一定出现在桥梁跨中,动应力响应沿桥跨方向呈现出与位移响应幅值不同的空间分布趋势;不同类型杆件的应力动力系数不相同;现行规范中关于运营动力系数的计算不能真实反映不同车速下桥梁杆件应力的动力放大效应。  相似文献   

10.
铁路曲线箱梁桥曲率对车桥系统振动响应的影响分析   总被引:1,自引:1,他引:0  
以洛湛铁路通道益阳至永州段宝庆东路立交桥为工程背景,采用曲线桥梁列车—桥梁时变系统空间振动分析模型,在该模型中车辆表示为26个自由度的多刚体系统模型,桥梁结构则离散成空间曲梁单元,进行曲线箱梁桥列车—桥梁时变系统空间振动响应分析。采用计算机模拟方法,计算了列车以不同车速通过不同曲率的曲线箱梁桥的空间振动响应,探讨曲线梁桥曲率对车桥系统振动响应动力学性能指标诸如桥梁的横向位移、车辆的Sperlin平稳性指标、脱轨系数、轮重减载率等的影响规律。计算结果表明:车桥系统振动响应与曲线半径有关;随着车速的提高,列车运行时对曲线桥梁的曲率设置更为敏感;建议列车通过洛湛铁路通道益阳至永州段宝庆东路立交桥时,行车速度以不超过110km·h-1为宜。  相似文献   

11.
高速列车行驶时对周围的压力场和速度场产生强烈的变化,激烈的空气动力效应对周围环境产生一定作用,从而影响周围建筑和结构的抗风安全性。由于采用风洞试验测试手段研究此类问题在技术上尚存在难以克服的困难,因此,以计算流体力学Fluent软件为仿真平台,采用"动网格"技术,编写UDF列车行驶路线程序,对无侧风、微小侧风以及桥梁设计侧风速作用下高速列车以不同列车速度通过桥底的数值模拟,并对行车路线方向的桥梁主梁断面进行布点监测,给出高速列车通过桥底区域时的速度和压力空间分布规律,计算各侧风速、不同列车速度情况下列车风对桥梁主梁局部位置的冲击载荷,从而研究各工况下列车风对桥梁主梁的气动作用,为桥梁设计单位提供具有参考价值的结论和建议。  相似文献   

12.
基于南京大胜关大桥健康监测系统的速度监测数据,获取桥梁各部位在高速列车作用下的准静态位移响应和自由振动位移响应。讨论桥梁结构准静态位移响应、自由振动位移响应与位移动力系数的空间分布特征。建立桥梁结构在高速列车作用下的准静态位移响应、自由振动位移响应与位移动力系数概率密度模型。研究结果表明:南京大胜关大桥的主梁横向、墩顶纵向的准静态位移响应幅值与自由振动位移响应幅值存在桥梁中部(中间墩处)响应最大的空间分布特征;在长期运营过程中,南京大胜关大桥各部位单次过车的准静态位移响应服从Log-Logistic分布,自由振动位移响应服从t Location-scale分布,位移动力系数服从Burr分布。  相似文献   

13.
研究目的:列车通过桥梁时,与桥梁的耦合作用会影响桥上列车的行车安全性。大跨度斜拉桥由于自身结构柔度较大,其与列车的耦合作用往往会导致较大的桥梁响应,列车的行驶安全性更加需要予以重视。本文以某大跨度四线铁路斜拉桥为例,采用计算机模拟方法进行车-桥耦合分析,讨论不同列车类型、车速、列车行驶位置及双车交会下的桥梁及列车响应。研究结论:(1)不同速度等级下,桥梁振动响应呈往复变化,当列车施加的激励频率接近桥梁低阶自振频率时,桥梁振动接近峰值;车辆响应随车速增加而增大;(2)车辆类型对桥梁响应影响较大,其中货车C80的各项车辆响应指标更大;(3)车辆运行轨道对桥梁加速度和竖向位移的影响较小,对车辆响应的影响也较小,但对桥梁的横向位移影响较大;(4)双车运行情况下,随着两车入桥差的增加,桥梁的响应有所改善,不同的入桥距离对车辆响应的影响不明显;(5)本研究成果对类似大跨度斜拉桥的设计具有一定的参考价值。  相似文献   

14.
为研究铁路高速化、重载化引起的车-桥系统耦合动力问题,以新建南广客运专线郁江双线主跨228 m钢桁梁斜拉桥为工程背景,采用有限元软件ANSYS建立桥梁的动力模型并进行子结构分析、模态分析;采用多体动力学通用软件SIMPACK建立CRH2动车组模型,通过读取桥梁模态信息,在SIMPACK中实现列车与桥梁的数据交换,最终实现车-桥系统动力性能分析。对分析结果进行评估,结论为:当CRH2动车组以设计速度200km/h通过该桥时,列车走行性具有"优良"的动力性能;以基础设施预留250km/h的速度通过该桥时,除了列车横向总体舒适性指标为"良好"外,其余列车走行性具有"优良"的动力性能。这说明桥梁能提供足够的刚度,满足高速列车运行的高平顺性要求。  相似文献   

15.
为探讨列车通过高墩连续梁桥时的车桥耦合振动效应,为其他同类桥梁的设计提供参考,以宜万铁路狮子口大桥(高墩双线连续梁桥)作为研究对象,采用有限元软件ANSYS建立车桥耦合振动仿真模型,计算其自振特性以及不同行车速度匀速通过桥时车桥系统的空间耦合振动响应。  相似文献   

16.
为获得高速列车下穿时的列车风和桥梁振动响应特性,以某独塔无背索钢箱梁斜拉桥为工程背景,采用CFD仿真获得钢箱梁不同部位的列车风荷载,并基于桥梁动力模型研究施工阶段和运营阶段的风致振动响应.结果表明:高速列车下穿时,钢箱梁翼缘板、腹板及底板的表面风压均表现出明显的"头波""尾波"特性;随着车-桥间距和距轨道中心线距离的增...  相似文献   

17.
30m简支梁桥墩车桥耦合动力仿真分析   总被引:1,自引:1,他引:0  
根据车桥耦合振动分析理论,运用桥梁结构动力分析程序BDAP,针对城际轨道交通30m简支梁桥墩3种不同墩高方案,采用空间有限元建立全桥动力分析模型,对桥梁空间自振特性进行了计算,并对3种不同墩高方案在CRH2和德国ICE3动车组作用下的车桥空间耦合振动进行了分析,评价3种不同墩高方案的动力性能以及列车运行安全性与舒适性。研究结论表明:(1)3种墩高方案(H=8m、12m、15m)的全桥一阶横向自振频率分别是0.909Hz、1.051Hz和1.034Hz;(2)在CRH2和ICE3动车组以速度160km/h通过时,简支梁跨中竖向振动位移和竖向振动加速度较小,在限值以内;(3)在CRH2和德国ICE3动车组以速度160km/h运行时,车辆竖向和横向舒适性均能达到"优"。说明3种墩高方案具有足够的全桥横向刚度,满足列车时速160km行车的安全性和良好舒适性要求。  相似文献   

18.
对一种由三角形桁架和混凝土槽形板组成的新型铁路钢—混凝土组合桁架桥建立了有限元计算模型,分别采用空间梁单元、空间板单元及三维实体单元对混凝土槽形板进行模拟。计算分析了桥梁的自振特性和移动列车荷载作用下的动力响应。结果表明:采用三种不同单元模拟槽形板得到的结构主要振型及相应自振频率的计算结果较为接近,梁单元模型可在保证精度的前提下大大减少计算工作量;移动荷载作用下桥梁的竖向挠度和加速度响应较小,满足我国干线铁路行车要求。  相似文献   

19.
在列车-桥梁时变系统横向振动能量随机分析理论的基础上,采用26个自由度的列车空间振动模型,以空间梁单元模拟桥梁结构,以普通空间梁元即12自由度的空间梁元来模拟拱及吊杆结构,建立了双线铁路下承式连续梁拱组合式桥列车-桥梁时变系统空间振动分析模型,分别以构架人工蛇行波及前苏联规律性的竖向不平顺函数为横向及竖向激振源,进行双线铁路下承式连续梁拱组合式桥列车-桥梁时变系统空间振动响应分析。计算了列车以不同车速通过桥梁的空间振动响应,所得结果可供设计参考。  相似文献   

20.
以温州市某大桥为例,分别考虑风荷载的平均成分和脉动成分对车桥系统的影响,建立了风荷载作用下三塔悬索桥的车桥耦合动力分析模型,并根据势能驻值原理及形成结构矩阵的"对号入座法则",导出了车桥系统的空间振动方程,采用计算机模拟的方法,计算与分析了该桥列车通过时的桥梁动力响应和列车走行性。研究结果为三塔悬索桥的动力设计提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号