首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 382 毫秒
1.
地铁隧道下穿既有铁路施工时,线路基础变形会引起轨道几何尺寸发生变化,从而影响运营安全。首先,基于地铁隧道下穿既有有砟轨道线路路基的工程实际,建立有限元模型对地铁隧道下穿既有铁路变形规律进行分析。然后,以既有线路的轨道高低容许偏差管理值为依据,制定不同速度等级、不同埋深条件下铁路基础变形的控制标准和下穿施工时的沉降速率控制标准,为类似工程沉降控制标准的制定和施工安全管理提供参考。  相似文献   

2.
双线公路隧道下穿铁路隧道不同施工工法理论研究   总被引:3,自引:3,他引:0  
针对新建隧道下穿既有铁路隧道施工安全性问题,基于有限元摩尔库伦原理对不同施工工法的三维隧道交叉模型进行模拟分析。对比分析CD法、CRD法和双侧壁导坑法的新建公路隧道下穿既有铁路隧道引起的公路隧道施工不同部位稳定性演变和运营铁路隧道沉降变化,以期为类似工程提供借鉴作用。研究结果表明:对于自身隧道开挖,双侧壁导坑法在控制拱顶沉降具有一定优势,但在水平收敛上CRD法效果最好,其次是双侧壁导坑法。不同工法对既有铁路隧道的沉降影响不同,采用双侧壁导坑法公路隧道施工对既有铁路隧道的沉降影响最小,且不建议在交叉隧道处采用CD法进行施工。  相似文献   

3.
新建铁路隧道下穿既有铁路施工时引起地表沉降,这时对既有铁路运营安全的影响主要受控于轨道的前后高低差.采用ANSYS二维有限元方法,对新建铁路隧道下穿既有铁路工程建立数学模型,模拟计算不同最大等效应力、地质条件、隧道埋深、隧道结构形式等96种工况下的地表沉降量.并利用Peck公式回归分析得到96种工况下的沉降槽宽度系数.对模拟结果和回归结果进行数据分析,推导出沉降槽宽度系数与隧道埋深的关系式,以及地表最大沉降最与地层弹性模量、最大等效应力、隧道埋深的关系式.在此基础上,根据地表沉降曲线的正态分布规律、沉降槽宽度系数的数学意义和轨道的前后高低差管理值,推导得到新建铁路隧道下穿各等级既有铁路时的地表沉降控制标准.  相似文献   

4.
以武汉市两湖隧道工程下穿既有武黄城际线、南环线和大花岭疏解线等铁路为背景,对隧道施工中的重大风险源--区间下穿武黄城际铁路等6条铁路线的施工过程进行了三维仿真数值模拟。武汉两湖隧道盾构直径达15.5m,两轨面间的差异沉降不得大于5 mm,对地铁下穿段的施工提出了较高要求。数值模拟的计算结果表明:(1)超大直径盾构下穿铁路路基主要引起的是路基沉降,地层损失率是控制沉降的关键因素。(2)盾构下穿的铁路接触网立柱,沉降及位移明显,以沉降为主,水平向偏移主要表现为向盾构轴线侧倾斜。(3)在隧道开挖面通过路基下方前已发生沉降变形,穿过路基时轨道变形较大,完全穿越路基后轨道沉降几乎不发展。  相似文献   

5.
为揭示北京卵石土地区双洞单线隧道下穿施工期对既有铁路的沉降影响,基于某地铁下穿有砟铁路工程,以精密电子水准仪和自动化静力水准仪对铁路沉降开展现场实测,并对监测数据的时空规律进行挖掘分析,对左右线影响的空间叠加效应、地面沉降随盾构推进的时间台阶效应、道砟层和线路加固体系对沉降的隔离效应开展研究。结果表明,路基和轨道最大沉降发生在左右线隧道中心对应位置,隧道左线、右线先后下穿过程对铁路的沉降影响有明显叠加效应;路基和轨道沉降影响为突变型,可划分为左线刀盘切土及推进、左线盾尾离开、右线刀盘切土及推进、右线盾尾离开4个阶段,时程曲线台阶特征明显,施工期应密切关注;路基和轨道沉降影响在下穿施工期基本发展完成,该阶段沉降量占最终总沉降量88%以上,随后逐渐收敛;下穿施工引起既有铁路轨道沉降最大值为18.94 mm;引起既有铁路路基沉降最大值为24.24 mm,轨道沉降曲线较路基沉降曲线更为平缓,铁路道砟层和3-5-3扣轨起到有效隔离作用。  相似文献   

6.
基于京张高速铁路草帽山隧道下穿唐呼铁路北草帽山隧道工程,探究不同施工方法、不同夹层厚度、不同列车轴重对既有隧道衬砌结构沉降变形、振动加速度和振动速度的影响规律,并结合现场实际监控量测数据进行对比分析。研究结果表明:重载列车激励荷载作用下,下穿隧道采用三台阶法开挖时引起既有隧道的沉降值和振动响应均较小;新建隧道下穿既有重载铁路隧道的最小安全距离约为1.0B,且随着掌子面的不断向前推进,既有隧道沉降值、振动响应幅值均逐渐增大;掌子面距交叉点约30 m范围内,既有隧道沉降值和振动响应受下穿隧道施工影响较大;既有隧道衬砌结构边墙处y方向振动速度最大,z方向次之,x方向振动速度最小;随着列车轴重的增加,振动加速度幅值明显增大。  相似文献   

7.
盾构隧道下穿既有铁路线路会造成铁路线路沉降变形,影响列车的正常运行。基于此,在某实际工程的基础上,对地基加固、盾构下穿过程中铁路线路沉降情况进行监测分析。结果表明:旋喷桩加固注浆施工对铁路线路影响很小,当旋喷桩加固施工完成后,主加固区施工对铁路线路影响较大;地基加固对盾构下穿时铁路线路变形控制有较好效果,隧道穿越施工期间,路基最大沉降量为36.52mm,轨面最大沉降量为15.88mm,满足规范要求。  相似文献   

8.
张丙强  刘海  罗才松 《铁道学报》2023,(10):105-111
新建隧道下穿施工将引起上覆既有铁路轨道产生不平顺,导致列车振动加剧,进而降低旅客乘车舒适性。为此,提出新建隧道下穿施工引起铁路钢轨变形的理论计算模型。首先,采用高斯分布公式预测新建隧道施工引起铁路路基顶面沉降;然后,将轨道视为无拉力弹性地基上的梁,推导路基沉降引起轨道挠曲变形计算式。通过与室内模型试验结果和现场监测数据比较,对提出的理论模型进行验证。探讨铁路线路与新建隧道间的水平夹角、钢轨抗弯刚度、路基顶面沉降槽宽度系数对钢轨挠曲变形的影响规律。该计算条件下,当路基沉降槽宽度系数小于2 m,新建隧道垂直下穿施工将导致上方有砟铁路轨枕产生局部空吊现象;增大钢轨抗弯刚度,可以减小钢轨挠曲变形幅值;增大铁路线路与隧道之间水平夹角,可以减小钢轨挠曲变形波长;增大路基沉降槽宽度系数,轨道挠曲变形幅值逐渐减小,并且波长逐渐增大。  相似文献   

9.
大直径输水管道群顶管下穿既有铁路软土地基必然会引起铁路路基沉降和轨道变形,影响铁路行车安全。以顶管下穿既有京沪铁路工程为研究对象,对顶管下穿铁路引起的路基沉降和轨道变形规律进行数值模拟计算;提出软土地基沉降变形控制标准及加固方案、施工工艺参数及施工控制措施。通过现场监测成果,验证地基加固效果及其合理性。研究结果表明:输水管道群顶进施工引起铁路路基的最终变形沿铁路中心线呈"U"形分布,最大沉降量约为12.5 mm,大于最大路基面沉降和水平位移不应超过10 mm的要求。采用旋喷桩与袖阀管注浆相结合的地基加固措施,有效地提高了地基强度,减小了顶管施工对既有铁路的影响。整个顶管施工过程中,绝大多数监测点路基沉降值在3~10 mm之间,水平位移在2~6 mm之间,路基变形满足规定要求。该研究成果对新建构筑物下穿既有铁路工程的设计、施工具有借鉴意义。  相似文献   

10.
目的:目前,地铁隧道穿越铁路路基的情况越来越多,但软土地区盾构隧道斜下穿既有运营铁路的研究相对较少,因此需分析该情况下的路基变形规律。方法:以绍兴轨道交通1号线大滩站—火车站站区间盾构隧道下穿杭甬铁路绍兴站站房及6股铁路股道工程为例开展研究。采用有限元法分析了盾构隧道掘进施工对杭甬铁路路基的变形影响,并基于实测数据对数值模拟结果进行了对比分析,充分验证了袖阀管注浆加固方案的有效性。结果及结论:有限元分析结果表明:未考虑盾构穿越区域地基加固的情况下,杭甬铁路路基顶面最大沉降值为13.12 mm,不满足沉降控制标准要求;当盾构穿越区域采用袖阀管注浆加固措施后,杭甬铁路路基顶面最大沉降值为8.20 mm,满足沉降控制标准要求,说明袖阀管注浆能够有效控制铁路路基沉降和轨道的不平顺。实测数据结果表明,盾构隧道下穿铁路施工期间的累计变形历程可分为路基隆起、路基快速沉降、路基平稳波动及后续沉降4个阶段,且前期隆起量大、后续变形相对较小,加固后的路基累计变形量能控制在10.00 mm以内。  相似文献   

11.
武汉长江隧道盾构下穿武九铁路沉降影响分析   总被引:7,自引:3,他引:4  
研究目的:武汉长江隧道周边工程环境复杂,其中盾构下穿既有武九铁路是该工程的难点之一.为比较准确地分析盾构下穿武九铁路的沉降影响,本文分别采用经典的Peck法和有限元法计算了盾构推进对武九铁路的沉降影响,介绍了施工中所采取的保护措施和现场监测情况,为同类工程积累了经验.研究结论:施工过程中的现场沉降监测结果大于计算结果,但未影响铁路的安全运行.由于列车运行的影响,下穿铁路引起的地表沉降槽宽度和深度均大于邻近的和平大道.  相似文献   

12.
黄土地区地铁盾构下穿铁路变形控制技术   总被引:1,自引:0,他引:1  
研究目的:黄土地区某城市地铁2号线盾构施工下穿既有陇海铁路线是一个盾构施工中的I级风险源,为保证地铁盾构施工安全下穿陇海线路,开展了盾构施工穿越既有铁路的变形控制技术研究,以为盾构安全施工提供技术支撑。研究结论:(1)黄土地区地铁盾构下穿既有陇海线路的地表沉降规律:不采取控制措施盾构施工时,路基右线隧道轴线正上方的沉降量为20.48 mm,左线隧道轴线正上方的沉降量为12.85 mm,左右线隧道的轴线上的沉降量均超出了沉降允许值;采取严格控制土压力、盾构匀速通过、严格控制注浆量、减少盾构推进方向的改变等减小地铁盾构下穿既有铁路施工风险的措施盾构施工时,右线隧道轴线正上方的沉降量为5.44 mm,左线隧道轴线上方的沉降量为4.95 mm,均小于变形允许值。(2)FLAC计算预测的变形规律与实际值基本一致,地表和铁路路基的变形量在允许范围内;减小地铁盾构下穿既有铁路施工风险的措施合理有效。(3)该研究成果可应用于黄土地区地铁盾构下穿铁路施工变形控制。  相似文献   

13.
依托京张高铁新八达岭隧道下穿既有京张铁路青龙桥车站工程,为控制下穿过程中青龙桥车站的沉降变形,采用Midas GTS NX数值模拟软件,模拟隧道下穿车站的施工全过程,得到既有车站路基变形的沉降曲线。研究发现路基最大沉降发生在新建隧道拱顶上方,路基累计最大沉降16.017 mm,建议在隧道施工过程中通过控制循环进尺和施工速度来控制路基的沉降量,并及时补充道砟,恢复轨道沉降变形,从而控制轨道的沉降。提出洞内■159 mm超前大管棚注浆加固、洞外地表垂直袖阀管注浆加固和3-5-3扣轨加固的变形控制技术,为下穿工程控制沉降变形提供经验借鉴。  相似文献   

14.
目前城市轨道交通项目兴起,越来越多的盾构隧道下穿复杂既有建筑物,从而所带来的安全隐患极大。依托轨道交通资阳线工程下穿铁路公路共用框架桥,提出了盾构下穿微沉降控制技术,建立盾构下穿铁路公路共用框架桥三维模型,探明了成渝铁路轨道及成渝线框架桥墩台变形和应力变化规律,揭示了资阳线盾构区间双线正下穿成渝铁路的安全性和措施的有效性。研究成果可为盾构区间下穿铁路的安全性分析提供技术参考,对未来地下工程具有实际指导作用。  相似文献   

15.
研究目的:新建地铁隧道下穿既有铁路工程涉及到铁路运营安全和地铁施工安全,受到工程界的重视.文中选取暗挖地铁隧道斜交下穿某既有铁路工程为研究对象,该地铁隧道为双线、部分浅埋隧道,隧道采用暗挖法施工难度和风险较大.通过ansys计算软件按初步设计的施工顺序和施工工艺进行三维数值计算,分析隧道施工引起的地层沉降和塑性区分布.研究结论:(1)隧道施工引起地层内力重分布,是地表产生沉降的原因,但是列车荷载对地表沉降的影响更为显著;(2)数值计算对施工措施的选择提供了重要依据;(3)施工前对铁路路基注浆加固或在铁路路基两侧预埋袖阀管根据沉降情况进行注浆,可对沉降变形进行控制.  相似文献   

16.
盾构下穿引起的既有线路轨道变形与列车运营作用研究   总被引:2,自引:2,他引:0  
地铁盾构下穿既有高铁线路施工时会对既有地基产生扰动,引起地层不同程度的沉降、路基下沉、轨道结构变形等病害,不仅对隧道和周边环境的安全产生不利影响,严重的会造成既有铁路破坏,影响线路的正常运营,给乘客带来安全隐患。利用有限元软件ABAQUS建立了轨道-路基-下穿隧道有限元模型分析了盾构施工对既有线路轨道结构的影响,并结合高速铁路结构间的相互作用关系,基于车辆-轨道耦合动力学理论对盾构下穿引起的线路变形、轨道结构层间离缝与列车运行相互作用进行了分析。  相似文献   

17.
根据左权县西安村水电站1号引水隧洞下穿既有阳涉铁路半坡2号隧道工程实例,结合经验公式法和三维数值模拟计算方法,对引水隧洞下穿既有铁路隧道的爆破施工影响进行研究,分别得出引水隧洞控制爆破范围和既有铁路隧道受影响区段及变形规律,提出引水隧洞爆破施工时既有铁路隧道的处理措施,以确保既有铁路隧道衬砌结构和列车运行的安全。  相似文献   

18.
地铁盾构下穿既有铁路施工时,土体的扰动会导致既有铁路产生不均匀沉降,对铁路安全运营产生非常不利的影响。本文考虑盾构隧道下穿施工,铁路路基及结构间的相互作用关系,建立结构-路基-土体有限元模型,分析盾构施工过程中铁路路基和框架桥的变形特征,评估工程安全性,提出相应的施工加固措施和加固范围,并与监测结果进行了对比分析,结果表明设计所采取的加固措施是切实可行的。  相似文献   

19.
以在建的某城际铁路暗挖隧道段下穿既有铁路线路为工程背景,对既有铁路列车运营对下穿隧道的振动影响展开研究,得到如下结论:因施工前对既有铁路线路采取的预加固措施及对既有铁路的运行速度的限制,有效减小了既有铁路运营对新建隧道带来的影响,列车动荷载引起的隧道内力及变形并不显著,不需要单独进行加固措施设计。  相似文献   

20.
新建铁路隧道下穿既有运营隧道的设计与施工   总被引:2,自引:2,他引:0  
新建隧道小净距、大角度下穿既有运营隧道一直是隧道设计和施工的难题之一,此类施工既要保证新建隧道施工安全,又要确保既有线安全正常运营。针对山岭隧道下穿既有铁路隧道工程实例,计算新建隧道与既有隧道的最小理论净距,在分析新建隧道与既有隧道的立交关系、所处地层条件、既有隧道现状的基础上,对立交影响段附近新建隧道的施工方案及既有铁路隧道的加固方案进行研究。严格控制爆破振动对既有隧道结构和线路的影响,对既有隧道及新建隧道的监控量测进行信息反馈及预测预报,指导现场施工,确保下穿施工时既有线行车及新建隧道施工的安全。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号