首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
"抱轨"行驶是跨座式单轨交通的一个显著特点.针对单轨列车与双层桥面钢桁梁斜拉桥的车桥耦合动力性能,以主跨468 m牛田洋大桥为工程背景,基于ANSYS及SIMPACK等软件建立车桥空间耦合动力模型开展联合仿真,研究不同行车速度、不同列车特性下的车、桥动力响应,并对行车安全性等进行了评估.研究结果表明:列车在通过桥梁时的竖向动力效应较弱,位移冲击系数约在1.1以内,且桥梁竖、横向位移响应均与车速无显著联系;竖向位移随过桥车辆数目的增加而增大,横向位移在单线行车时明显大于双线对开工况;桥梁与车体振动加速度均随车速递增,且车体横向振动程度大于竖向;跨座式单轨列车在列车正常行驶速度100 km/h以内通过该大跨度斜拉桥时,桥梁的动力性能优良,桥上列车具备良好的乘坐舒适性.  相似文献   

2.
基于多体动力学理论和模态叠加法建立了悬挂式单轨交通系统车桥耦合动力学模型,分析了轨道梁布置方式、曲线半径和跨度对车桥动力响应的影响。分析结果表明:列车通过单线桥曲线段时,不同轨道梁布置方式对车桥动力响应影响显著,单线桥曲线段轨道梁布置在曲线内侧可同时降低车辆和桥梁结构的横向位移;轨道梁跨中横向位移随跨度和曲线半径增大而增大,导向轮径向力可抑制轨道梁因受车辆重力作用产生的横向变形;为减小车辆与桥梁结构的横向位移,悬挂式单轨交通系统小半径曲线段桥梁跨度宜为15 m。  相似文献   

3.
研究目的:悬挂式单轨梁梁部活恒载荷比大、宽跨比小,具有结构刚度小、阻尼比小等特点,易发生风致振动,从而影响悬挂式单轨列车乘坐舒适性、结构耐久性及安全性。本文采用ANSYS软件建立桥梁模型,在SIMPACK软件中建立车辆模型,对车辆和桥梁子系统施加静风力和脉动风力,建立风车桥耦合动力系统。以某悬挂式单轨双线7跨30 m简支梁方案为例,进行不同风速激励下双线列车交会的系统动力响应分析。研究结论:(1)采用通用软件可以开展悬挂式空轨风车桥耦合动力分析;(2)气动三分力系数在不同车桥组合下变化明显,横风对双车交会过程中背风侧车辆的风载突变效应强于迎风侧车辆;(3)梁部跨中横向位移在风速15 m/s到25 m/s区间随着风速的增大而增大,平均风对迎风侧轨道梁横向位移的影响比背风侧大;(4)双车交会过程中,迎风侧车辆横向加速度变化不明显,由于背风侧车辆三分力系数的显著变化,横向加速度在交会开始和结束时变化明显,风载突变效应显著;(5)本研究成果可为悬挂式单轨交通系统的结构设计与运输管理提供参考。  相似文献   

4.
采用23个自由度的多刚体车辆动力分析模型、空间梁单元模拟桥梁结构,据位移协调原理,建立了广州市轨道交通四号线四跨变截面连续刚构特大桥沙湾大桥车桥耦合时变动力分析模型,并将轨道的竖向不平顺和方向不平顺作为系统的激振源,编制程序计算地铁列车通过时的车桥耦合振动响应。计算结果表明:在地铁列车常用编组和运营条件下,车辆与桥梁的振动响应随着列车速度的提高而缓慢增大;列车舒适性与安全性各项指标均能满足要求;桥梁具有足够的竖向刚度与横向刚度,所得结果可供设计参考。  相似文献   

5.
为研究车桥系统运行的影响规律,建立了车-桥耦合系统的振动分析模型,用UM软件进行了计算分析。对高速铁路列车过桥的动力响应进行了研究。对比了桥梁刚度、桥梁阻尼、列车速度、列车数量对车桥系统的影响规律。结果表明:随着列车运行速度增加,车辆和桥梁的动力响应也相应增大,但不是线性增大;桥梁的横向振幅随桥梁横向刚度的增大而减小;桥梁阻尼和列车数量对车桥系统影响较小。  相似文献   

6.
结合工程实例建立了64 m钢桁梁铁路桥模型。利用多体动力学软件SIMPACK和有限元软件ANSYS进行联合仿真,并考虑LM型和LMA型两种不同的踏面对车桥耦合系统的动力响应的影响。基于车辆走行性评价指标评价车辆运行性能,检算该桥是否具有足够的横向、竖向刚度及良好的运营平稳性等。研究结果表明,在相同的速度下,使用LM型踏面比LMA型踏面的车桥耦合系统的动力响应要大,尤其是在横向方面,如桥梁横向位移、横向轮轨力、车体横向加速度等;随着速度的增大,使用LMA型踏面比使用LM型踏面在减小车桥耦合动力响应方面效果更好,有利于提升车辆的舒适性和桥梁的安全性。  相似文献   

7.
李奇  吕超  李黎 《都市快轨交通》2024,37(1):143-151
为评价悬挂胶轮列车及钢轨道梁桥的结构性能,以开封悬挂式单轨示范线为背景开展现场试验与仿真研究。开发了胶轮列车-钢轨道梁桥耦合振动分析程序,根据现场实测的胶轮车辆的空气弹簧、走行轮刚度和阻尼等力学参数,建立胶轮列车模型。对车桥动力响应的现场试验与动力仿真分析结果进行综合比较,采用相关规范对列车走行性以及轨道梁桥的动力性能进行综合评估。结果表明:车桥动力特性及其振动响应的理论与实测结果基本吻合,车桥耦合分析方法可应用于悬挂式胶轮单轨交通系统振动性能研究;轨道梁竖向挠跨比小于相关规范的限值,竖向刚度设计合理;在列车竖向静活载作用下,相邻两跨轨道梁梁端竖、横向转角之和最大值分别为 4.5‰和 1.5‰;车速 80 km/h 下轨道梁纵、横向应力动力系数最大值分别为 1.17 和 1.14;考虑到悬挂式胶轮列车没有脱轨风险,列车轮重减载率及钢轨道梁桥横向加速度较传统铁路偏大,其相应限值可较现行铁路规范适当放松。  相似文献   

8.
南宁—广州高速铁路郁江特大桥为客货共线铁路,为了确保货物列车的走行性能及桥梁的振动性能,需要进行车桥动力仿真分析。选用代表性的1节DF4+20节C62作为货物列车编组,采用SIMPACK软件建立列车多体动力学模型,确定车辆和桥梁两个相对独立子系统的动力学评判指标并综合给出了评判标准。在此基础上基于多体动力学软件SIMPACK和有限元软件ANSYS联合仿真技术,仿真计算了货物列车以不同运行速度通过桥梁时的车桥动力响应。结果表明:在计算速度范围内未发现明显的共振车速(或敏感车速);桥梁挠跨比和振动加速度均满足限定要求;车辆运行安全性和平稳性都有一定的储备。  相似文献   

9.
高速列车车间悬挂对运行平稳性影响的研究   总被引:3,自引:1,他引:2  
以列车为研究对象,采用面向对象的建模技术,建立了带车端悬挂系统的5辆车编组、3辆车编组以及单车的垂向及横向非线性动力学模型,对高速列车的运行平稳性进行研究。对单车和3辆车编组的列车模型的频域分析表明车辆间加入车端悬挂系统增加了车辆间的耦合,能有效地提高列车高速运行时的平稳性。运用5辆车编组的列车动力学模型,采用时域仿真的方法,对车端悬挂参数进行了研究。研究表明车端的横向及垂向刚度和阻尼分别对列车的垂向和横向运行平稳性影响较大,车端的纵向能同时起到抑制车辆点头和摇头振动的作用,但需要设置较大的数值。  相似文献   

10.
桥梁结构刚度对高速列车—轨道—桥梁耦合系统的动力学特性具有重要的影响,直接关系到桥上列车的行车安全性和运行平稳性。基于列车—轨道—桥梁动力相互作用理论,以高速铁路常用的简支箱梁桥和双块式无砟轨道为研究对象,采用列车—轨道—桥梁动力学仿真通用软件TTBSIM2.0,研究桥梁结构刚度对高速列车—轨道—桥梁耦合系统动力性能的影响规律。结果表明:当桥梁梁体的刚度或者桥墩的横向刚度不足时,车辆和桥梁的相关动力性能指标将随着刚度的减少而急剧增大,严重影响列车过桥时的安全性和平稳性;当梁体垂向刚度不足时,有可能会引发车桥共振现象;当桥梁结构刚度满足设计规范要求时,车桥系统动力响应指标随刚度变化不明显,此时行车速度和轨道不平顺成为影响行车安全性和平稳性的主要因素。  相似文献   

11.
以某磁浮轨道交通(40+80+228+228+80+40)m大跨钢箱梁斜拉桥为研究对象,采用有限元软件ANSYS和多体动力学软件UM分别建立桥梁和磁浮列车模型。基于车桥耦合振动方法,针对2列磁浮列车相向行驶并在主跨跨中交会的最不利情形,进行列车以不同速度通过桥梁时不同梁高下车桥系统的动力响应及磁浮大跨桥梁的竖向刚度限值研究。结果表明:磁浮列车的竖向动力响应随车速的增大而显著增大,时速从40 km增大到140 km时,列车竖向动力响应增幅达到120%以上;车体竖向加速度和Sperling指标不是桥梁结构刚度限值的控制因素;磁浮列车的悬浮间隙对梁体刚度变化较为敏感,随着梁体刚度逐步增大,悬浮间隙的波动变小,梁体挠跨比减小约25%,悬浮间隙波动减小幅度达35%,悬浮间隙可作为中低速磁浮大跨桥梁结构刚度限值的控制指标;梁体挠跨比1/3015可作为磁浮大跨桥梁的竖向刚度限值。  相似文献   

12.
轨道不平顺导致的车桥耦合振动分析   总被引:2,自引:1,他引:1  
研究目的:轨道不平顺常常是激起车桥系统耦合振动的主要因素之一,通过研究轨道不平顺导致的车桥耦合振动规律,为铁路桥梁精确设计提供理论依据。 研究方法:以H.Hamid等人提出的轨道不平顺功率谱密度为例,构造了时域内的轨道随机不平顺函数。以轨道不平顺样本函数为激振源,通过求解车桥系统耦合振动微分方程,分析铁路桥梁在列车荷载作用下的动力响应规律。 研究结果:计算了广西红水河铁路斜拉桥在列车通过时的动力响应,给出了不同车速及不同不平顺样本函数情况下桥梁主跨中点横向位移时程曲线。 研究结论:桥梁结构动力响应主要随车速及不平顺样本函数的不同而变化,且有较大的随机性。对于广西红水河铁路斜拉桥,桥梁主跨中点的最大横向位移一般在车速为75~95km/h时达到最大。  相似文献   

13.
曲线通过性能分析是转向架设计的基础之一。使用多体系统动力学软件建立悬挂式单轨列车-轨道系统60自由度动力学模型,模型考虑轮胎-轨道接触非线性,空气弹簧和抗横摆减震器弹簧非线性。模拟悬挂式单轨列车通过曲线轨道时导向轮与轨道间法向接触力的动态变化过程,研究了空气弹簧水平刚度和轨距变化对转向架曲线通过性能的影响。结果表明:悬挂式单轨列车转向架具有不同于传统轨道车辆的曲线通过形态;空气弹簧水平刚度对转向架的曲线通过形态和导向轮法向接触力有显著的影响,水平刚度为0.01 MN/m时,相较于水平刚度0.1 MN/m,最大导向轮轨法向接触力可减小63.2%;轨距变化对转向架的曲线通过性能影响不明显,减小空气弹簧水平刚度可改善转向架的曲线通过性能。  相似文献   

14.
运用自编车—线—桥垂向耦合振动分析程序,分析车辆通过桥梁时列车和桥梁的动力响应,研究桥梁墩台发生不均匀沉降对车、桥垂向系统耦合振动的影响。研究表明:货物列车通过时,在桥梁墩台不均匀沉降单一因素引起轨道不平顺的条件下,车辆和桥梁的动力响应随着列车速度的提高而增大,列车在经过桥梁折角时,轮轨力增大;在普通轨道不平顺和桥梁墩台不均匀沉降引起的附加轨道不平顺叠加的条件下,车辆和桥梁的动力指标中受到影响最大的是车体加速度,其次是轮重减载率,但各项指标均在规范规定的范围内。因此,对于客货共线的桥梁,规范限值可以满足货车运行安全性的要求,并且有一定的预留量。  相似文献   

15.
提出一种跨座式轻轨车、轨道梁及刚构桥空间耦合振动时域分析方法。轨道梁及刚构桥采用常规有限单元模拟,跨座式轻轨车采用弹簧阻尼相连的多刚体模拟,可方便考虑走行轮、导向轮、稳定轮下轨道不平顺影响,每一积分步内对桥梁系统动力方程扩展,建立轻轨车-轨道梁-刚构桥时变系统空间振动方程,采用直接积分法同时求解三者空间动力响应,并编制相应计算分析程序。针对目前世界最大跨度轻轨专用刚构桥96m+160m+96m,探讨车速、单线行车、双线对开等不同工况对三者动力响应影响并对轻轨车进行乘坐舒适度评价。结果表明:在设计行车速度下,乘客可安全舒适通过该桥。该方法可运用于跨座式轻轨车与其它轨道梁或桥梁空间振动分析。  相似文献   

16.
结合轻型墩横向刚度合理值研究 ,对某典型的轻型双柱墩桥进行全面综合的动力试验 ,分析研究该桥的动力特性、墩梁体系横向振动、支座对桥梁横向振动的影响及列车通过该桥的抗脱轨安全性 ;综合评估轻型双柱墩桥的横向动力性能。  相似文献   

17.
研究目的:随着社会经济发展和人们需求的提高,铁路货运能力亟待进一步提高,在既有铁路网基础上加大铁路列车轴重是有效提高铁路运能的主要途径之一。列车轴重增大后车桥振动效应将增加,既有铁路网中的钢桥能否适应铁路轴重的提高成为列车轴重能否增加的关键问题。本文为分析重载列车作用下钢桥动力性能,选取既有线中常用跨度48 m钢桁梁桥为研究对象,通过轮对与轨道接触处的力与位移相互关系建立空间重载铁路车-桥系统耦合振动分析模型,在与实测结果对比基础上,对影响重载铁路钢桁梁桥动力性能的轨道不平顺、列车轴重和列车速度等因素进行系统分析。研究结论:(1)轨道不平顺功率谱、列车轴重和列车速度均对重载列车作用下的钢桁梁桥的动力性能有着重要影响;(2)美国六级轨道不平顺与桥上实际线路不平顺更加接近;(3)重载铁路运输中27 t轴重列车通过48 m钢桁梁桥时建议对列车运行速度进行限制。  相似文献   

18.
Research purposes: The bridge in circinate line of Hefei Railway Hub was built in the curve with radius of 300 m. In order to reduce structural height of the bridge across the Huainan railway, the single-line simple trough girder bridge with 32 m span was applied. The lateral vibration of the vehicle and bridge is intensified under the action of centrifugal force, and the torsion effect is obvious when the train running on the bridge in the small radius curve. On the other hand, the torsional rigidity of the trough girder with open section is lower than that of the closed box girder. Moreover, the wheel lateral force and the derailment coefficient is increased, and the reduction rate of wheel load is also increased owing to centrifugal force caused by unbalanced superelevation. In order to ensure the safe and smooth operation of the train and reveal the dynamic performance of the trough girder bridge in the small radius curve, the vibration response of the single-line trough girder bridge is tested and analyzed. Research conclusions:(1) The measured vertical and horizontal fundamental frequencies of the trough girder bridge are obviously larger than the vertical self-vibration frequency limit given by the relevant specification and the normal value of the measured transverse minimum natural vibration frequency. The lateral stiffness of the bridge is mainly controlled by its foundation stiffness. (2) The stiffness of the bridge can meet the requirements of C62 freight train safe running on the trough girder bridge in the curve with radius of 300 m at a speed of not more than 40 km/h. (3) The transverse vibration response of the bridge consists of the transverse static response of the structure caused by the centrifugal force and the lateral dynamic response caused by the coupling vibration of the vehicle-bridge system. (4) The research results can be referenced in the design of the railway bridge in the curve and coupled vibration analysis of trains and bridge in the small radius curve. © 2018, Editorial Department of Journal of Railway Engineering Society. All right reserved.  相似文献   

19.
选取大秦线5个轨道、1个路基和9个桥梁试验工点,进行2万t列车的运行和制动试验,研究大秦线轨道、桥梁和路基的动力性能。结果表明:2万t试验列车通过典型线、桥、路基和道岔地段时,实测脱轨系数、轮重减载率和轮对横向力以及道岔尖轨开口量等指标均在安全限度内,说明在大秦线开行2万t货物列车是安全可行的。2万t试验列车作用下的轨道动力响应和各项位移参数与普通列车正常运营时基本相当,但2万t试验列车车辆由车轮扁疤产生的轮轨垂直力最大值达到277 kN,会对轨道结构产生显著的破坏作用;桥梁的挠度和振动参数基本在安全控制范围内;路基的动应力值基本在45 kPa以内,轴重由21 t增加到25 t后,路基动应力只增加2 kPa左右,但2万t列车通过时相邻两转向架4个车轮产生的路基动应力分布为1个梯形形式,而6 000 t列车通过时为2个交叠的梯形形式。  相似文献   

20.
采用大型多体动力学软件Universal Mechanism建立悬挂式单轨列车系统动力学模型,模型中考虑了各减振器、弹簧、止档的非线性特性,以及橡胶轮胎-轨道的非线性作用特性。通过数值积分求解车辆的动态响应,对单轨列车关键悬挂参数进行研究。研究表明:导向轮高度应尽量放低,与轴心高度一致较为合理;导向轮与导向轨应有一定的预压,但不宜过大;横向减振器等效阻尼应取50 k N·s/m以上,以保证车辆横向平稳性的同时,让车辆进出曲线时横向振动能够快速收敛;垂向减振器等效阻尼取30~40 k N·s/m能够保证车辆具有良好的垂向平稳性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号