首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
钢弹簧浮置板轨道是我国城市轨道交通采用的主要减振措施之一。在北京地铁5号线灯市口站—东四站区间,测试运营地铁在浮置板轨道地段和普通整体道床地段的地面垂向振动加速度,并进行时域和1/3倍频程频谱分析。分析结果表明:钢弹簧浮置板轨道对隧道正上方减振效果最好,在两侧,随着距离的增大减振效果逐步变小。钢弹簧浮置板轨道对10 Hz以内的振动成分没有作用,地面振动的能量主要分布在10~20 Hz,钢弹簧浮置板轨道对此频域范围内的减振效果最好。  相似文献   

2.
通过轮轨耦合以及ANSYS有限元仿真,研究分析了地铁3种典型轨道结构振动响应、频率、距隧道中心距离之间的关系。研究表明,速度响应方面,距隧道中心水平方向0~20 m范围浮置板减振效果最优,20~80 m范围弹性支承块最优,80~170 m范围弹性支承块和弹性扣件轨道较优;加速度响应方面,距隧道中心水平方向0~100 m范围浮置板减振效果最优,100~170 m范围弹性支承块和弹性扣件轨道较优;振动频率方面,0~1 Hz范围弹性扣件轨道减振效果略优,20~40 Hz范围弹性支承块略优,1~20 Hz和40~500 Hz范围浮置板减振效果最优。  相似文献   

3.
长沙地铁2号线一期工程沿线存在多处振动敏感区域,环评要求高,轨道系统采取了轨道减振器扣件、Vanguard先锋扣件、橡胶隔振垫减振轨道、钢弹簧浮置板轨道等减振措施。为科学评价不同减振措施或产品的减振性能,在2号线一期工程试运行期间,对减振轨道铺设的地段开展了综合测试。测试结果表明:相较较高频率的振动分量,4Hz以下的振动分量较难准确测量,建议分析减振效果时考虑频率范围4~200Hz;直/曲线对轨道结构振动响应影响显著,减振轨道铺设于直线地段和曲线地段时的减振效果略有差异;轨道减振器扣件可适用于振动预测超标量小于等于3dB的地段;Vangaurd扣件可适用于振动预测超标量为6~8dB的地段;橡胶隔振垫减振轨道可适用于振动预测超标量大于等于8dB的地段;对于振动预测超标量大于等于8dB的地段,特殊减振措施可选用钢弹簧浮置板轨道。  相似文献   

4.
涂勤明 《铁道建筑》2020,(5):135-138
对中等减振扣件轨道、梯形轨枕轨道、钢弹簧浮置板轨道、普通整体道床轨道进行环境振动现场实测,对比分析地铁列车通过时不同轨道的钢轨、道床、隧道壁振动加速度(垂向、横向)及钢轨动态变形(垂向、横向).结果表明:4种类型轨道的钢轨振动加速度相差不大;中等减振扣件轨道的道床振动加速度小于普通整体道床轨道,另外2种减振轨道明显大于普通整体道床轨道;钢弹簧浮置板轨道的隧道壁振动加速度明显小于其他轨道;钢弹簧浮置板轨道减振效果最好;中等减振扣件轨道的钢轨动态变形明显大于其他轨道.  相似文献   

5.
为研究时速120 km地铁多种减振轨道结构的振动特征及振动传播规律,对比分析了某时速120 km地铁线路上的DZ-Ⅲ型减振扣件轨道、GJ-Ⅲ型减振扣件轨道、减振垫浮置板轨道在时域和频域内的实测结果。时域分析结果表明:3种轨道结构的浮置板(道床板)振动加速度幅值大致相等,减振垫浮置板轨道处隧道振动加速度幅值比其余2种轨道处小一个数量级,更有效地削减了振动加速度幅值。频域分析结果表明:在20~80 Hz和0~20 Hz频段内,减振垫浮置板轨道的隧道振动加速度级比另外2种轨道小,减振效果更好。除GJ-Ⅲ型减振扣件轨道钢轨与道床板间在0~80 Hz频段内衰减不明显外,振动加速度的传播大致遵循由钢轨到浮置板(道床板),再到隧道逐层衰减的规律。  相似文献   

6.
减振垫轨道是城市轨道交通高等减振措施中常用的一种轨道结构。为了研究减振垫轨道结构对车致环境振动的影响,首先对减振垫轨道的模态进行分析,其次建立了地铁列车-减振垫轨道-隧道-土体-建筑物系统模型。该系统模型分为两个子模型,将子模型1中的竖向轮轨力作为子模型2的外加激励,计算分析了轨道板、隧道壁、地面和楼层的车致振动加速度特性与振级特性。研究结果表明:由列车运营引起的振动在传递途径中,竖向振动加速度由轨道板到隧道壁的衰减量远大于由隧道壁到地面的衰减量,楼层和地面的竖向振动加速度水平基本相当;轨道板、隧道壁、地面和楼层的1/3倍频程加速度级两个峰值对应的中心频率31.5 Hz、80 Hz与轨道板第5阶、第10阶主振型的固有频率有关;减振垫轨道的中心频率介于3.15 Hz和8 Hz之间的减振效果较好;隧道埋深大于11 m,以及采用减振垫轨道结构的情况下,隧道正上方地面和楼层的Z振级最大值均小于70 dB,能够满足环评标准的要求。  相似文献   

7.
为了得到地下线路采用橡胶减振垫轨道的减振效果,建立车辆—轨道—隧道—土层—建筑物的三维有限元-无限元耦合模型,分别计算采用普通整体道床轨道和橡胶减振垫轨道2种工况下沿线建筑物的三向振动加速度振级。结果表明:列车运行引起的建筑物振动,以垂直于线路方向的横向振动为主,其次为垂向振动,平行于线路方向的纵向振动最小;采用橡胶减振垫轨道后,楼柱节点的横向、纵向加速度振级明显减小,且随着距地面高度的增高,降幅基本一致,约为8.9 dB;采用普通整体道床轨道和橡胶减振垫轨道时,楼板垂向振动规律基本一致,即随着楼层的增加,楼板垂向振动呈现先减后增的趋势,但是差别甚小。与普通整体道床轨道相比,橡胶减振垫轨道可以降低楼板垂向加速度振级约9 dB。  相似文献   

8.
以南昌地铁1号线的某标段工程为研究背景,建立曲线地段的轨道—隧道—大地三维有限元模型,同时考虑竖向和水平向轮轨作用力的影响,计算得到了地铁列车通过曲线时诱发的环境振动。计算结果表明:当曲线的半径一定时,地铁在曲线地段运行引起的钢轨、隧道壁和地面振动响应均与列车行驶速度密切相关;曲线地段地面水平向振动加速度级要大于竖向,平均高出5 d B;水平向和竖向振动加速度级均表现出随着与隧道中心线间距离的增加而呈波动性衰减特性,频率越高振动加速度级衰减的速度越快;环境振动在衰减过程中都会出现放大区,竖向和水平向的振动放大区出现的位置有所不同,但振动放大区的主频差别不大。  相似文献   

9.
为研究高速铁路路堑在高速列车荷载下的地面垂向振动随距离传播规律,对宝兰高铁路堑段地面垂向振动进行现场试验,对现场试验的数据从时域和频域两个方面进行分析揭示地面垂向振动加速度响应特征。结果表明,路堑垂向振动加速度在距离线路中心线12.5~40 m总体呈衰减趋势,靠近线路中心线处12.5~20 m处垂向振动加速度衰减较快,较远处20~40 m处衰减速度较慢。地面垂向振动加速度在各测点处由60 Hz及100 Hz附近的频率成分主导,随着距离的增大,110 Hz左右的高频成分衰减很快,到了距线路中心线20~40 m,振动加速度在60 Hz左右的频率成分占优。依据现场工况,建立了列车-轨道-路堑-地基数值分析模型,并通过数值试验的方法,设置不同的场地速度特性,分析不同场地条件对路堑振动响应的影响。数值分析表明,场地速度特性(覆盖层与下卧层模量比、覆盖层厚度)是影响地面振动剧烈程度的重要因素,地基覆盖层与下卧层模量比越大,地面振动越强烈,模量比一定,覆盖层厚度越小,地面振动越大。  相似文献   

10.
为分析地铁列车运行引起岩石场地振动传递特性,选取青岛某地铁线路区间,对正常运营的地铁引起隧道及地面垂向振动进行同步测试分析.结果表明:1)隧道与地面振动主要集中在50~200 Hz,隧道200 Hz处的振动最为显著,地面60~80 Hz的振动最为显著.地面距离隧道中心线90 m范围内,振动呈波动衰减,在距离隧道中心线30 m与75 m处,存在2个振动放大区,相对于其前一测点,均在8~25 Hz与60~80 Hz频段有所放大;2)隧道壁至地面振动传递损失曲线均近似呈V型分布,高频段振动传递损失较低频段大,传递损失基本在20~25 Hz附近最小,大部分测点在此频段传递损失出现负值,说明此频段附近振动加速度从隧道壁传递至地面有放大现象;3)地铁列车运行引起青岛岩石场地振动传递特性与其他场地类别相比有相似性也有差异性,测试结果可为青岛地铁后期线路规划对地面环境振动影响提供参考.  相似文献   

11.
在地铁区间为小半径曲线、地面无干扰振源并可以布置高密度测点的珍贵测试条件下,采用高灵敏度数据采集与分析系统,对北京地铁某曲线段进行地面振动测试。根据测试数据,研究地铁列车通过曲线段时引起地面振动加速度的时域和频域内传播规律。结果表明:在距离隧道中心线100m范围之内,地铁运营引起地面振动加速度的时程峰值主要在10-2 m·s-2量级,远大于背景振动下的10-4 m·s-2量级;在距离隧道中心线50m范围之内,水平振动强度是竖向振动强度的2~4倍,建议在涉及曲线段地铁的环评中应同时考虑竖向振动和水平振动的影响;水平振动加速度的主要频率成分为30~120Hz,建议在关于曲线段地铁的试验、测试和模拟中应选取较宽的频率分析范围;地面振动加速度频谱幅值随着与隧道中心线间距离的增加而呈波动性衰减。  相似文献   

12.
在西安地铁2号线永宁门区段进行振动监测。通过振动实测结果,分析地铁列车单独运行时在不同运行速度工况下的地铁隧道、永宁门城墙、永宁门城楼的振动响应。结果表明:与普通轨道相比,钢弹簧浮置板道床的隧道壁水平向振动加速度幅值能减小45.1%,隧道壁垂直向振动加速度幅值能减小29.2%;永宁门城墙水平向、垂直向最大振动速度均为0.035 mm/s,永宁门城楼水平向、垂直向最大振动速度分别为0.083 mm/s和0.047 mm/s,均满足相关标准限值和国家文物局的建议值要求;地铁列车运行速度变化对其上部文物振动速度有一定的影响,但影响较小。  相似文献   

13.
采用2种不同刚度的扣件,对地铁振动传播途径各主要部位进行了振动测试,获得了各部位相应的振动加速度时程数据。首先,统计了时域振动加速度峰值及其变化情况;然后,通过傅里叶变换计算了各部位振动的频谱,对比分析了振动在传播过程的频谱变化规律;最后,计算分析了地表Z振级变化。结果表明,扣件刚度在一定范围内变化,对60 Hz附近的振动峰值影响有限,隧道壁和地表的竖向及横向振动振级分别在650 Hz和340 Hz附近迅速下降,之后趋于平缓。使用刚度较小的扣件有利于减小地表竖向振动,但不利于减小地面横向振动。  相似文献   

14.
为研究地铁A型车辆在不同等级减振轨道上行车时的动力学特性,基于车辆-轨道耦合动力学理论,以深圳地铁某线路实际铺设的不同等级减振轨道为研究对象,建立考虑不同等级减振轨道的地铁A型车辆-轨道垂向耦合动力学模型,采用数值仿真的方法分析不同等级减振轨道下车辆-轨道耦合系统的动力学特性。结果表明:相对于铺设其他两种等级减振轨道,铺设高等和特殊减振轨道时车体的垂向振动加速度均方根值增幅超过30%,车体垂向Sperling平稳性指标增幅超过5%;钢轨垂向位移增加明显且钢轨垂向位移的标准差增加了约3倍。主要结论为:采用高等级减振轨道会一定程度恶化车辆动力学性能和乘客乘车环境,在实际选取不同等级减振轨道时应综合考虑地铁车辆的行车动力学性能。  相似文献   

15.
为研究地铁列车提速对减振垫浮置板轨道的振动特征的影响,对比分析地铁列车行车速度为80 km/h和120 km/h工况下减振垫浮置板轨道时域和频域的实测结果。分析结果表明:行车速度对减振垫浮置板轨道结构垂向位移的影响不大;行车速度为120 km/h的工况下钢轨、浮置板、隧道的振动加速度1/3倍频程的峰值较行车速度为80 km/h的工况下的峰值分别有6.2、2.8、0.5 dB的增大;分频段分析各测点振动加速度综合振级,结果显示:在0~20 Hz与20~80 Hz频段内,只有钢轨的振动加速度综合振级增长超过5%,浮置板与隧道振级变化均小于2.5%,在80~120 km/h速度范围内,行车速度的提高对减振垫浮置板轨道隧道振动的影响并不明显。  相似文献   

16.
对上海轨道交通9号线某区间缓和曲线段地铁运行引起的地表振动进行了现场测试,并对实测的地表振动加速度进行了时域、频域及1/3倍频程分析。结果表明:在缓和曲线段,地铁列车行驶引起的地表横向加速度有效值是竖向加速度有效值的0.9~3.1倍;地表加速度频率分布在30~120 Hz,其中最显著的频率为30~50 Hz;加速度振级随着与隧道中心线水平距离的增加呈减小趋势,且在距离隧道中心线5 m、30 m时出现放大区;地表土体振动加速度幅值、频谱峰值随着地铁列车速度增大基本呈增大趋势。  相似文献   

17.
针对地铁车辆转向架载荷测试的特点,选择了不同的滤波频率对上海轨道交通1号线车辆转向架振动加速度在线试验测试数据进行处理。结合不同的被测量,分析了滤波频率对转向架荷载测试的影响,提出了适用于地铁车辆转向架荷载测试的滤波和采样频率;转向架动力学试验中振动加速度采样频率不低于640Hz;构架垂向和纵向加速度滤波频率选择125~150Hz;架悬电机垂向、横向和纵向加速度滤波频率不低于250Hz。  相似文献   

18.
轨道型式对地铁与建筑物共建结构振动响应的影响   总被引:2,自引:0,他引:2  
以上海某地铁站与建筑物共建工程为例,现场实测由于地铁运行引起的车站站厅层、上部结构各楼层的动力响应,建立道床—共建结构—地基二维动力有限元模型。通过对比分析计算和实测的共建结构竖向振动加速度的时域谱和1/3倍频程振级谱,探讨普通轨道、科隆蛋高弹扣件轨道和钢弹簧浮置板轨道在引起共建结构振动响应方面的差异。研究结果表明:采用科隆蛋高弹扣件轨道时,共建结构同一位置的加速度峰值约是普通轨道的1/2,而固有频率为6 Hz的钢弹簧浮置板轨道的加速度峰值仅为普通轨道的1/10左右,但钢弹簧浮置板轨道引起的振动周期和持时相对较长;科隆蛋高弹扣件轨道与钢弹簧浮置板轨道均有明显的减振效果,所不同的是前者对25 Hz以下、后者对25 Hz以上频段的竖向振动有较好减振效果;钢弹簧浮置板固有频率的变化对该共建结构振动响应的影响很小。  相似文献   

19.
针对地铁小半径曲线地段列车运行对建筑物振动影响问题,运用车辆-轨道耦合动力学计算获得振源激励,建立列车动荷载作用下隧道-地层-建筑物有限元模型,并结合现场测试验证了模型的可靠性,研究列车运行对浅基础、短桩基础、长桩基础以及筏形基础建筑物振动响应的规律。结果表明:随着楼层的增加,建筑物的横向振动表现为先减少后增大,垂向振动表现为逐层增大的趋势;建筑物的振动在中高频成分(>20 Hz)有所增加,低频成分则有所衰减;垂向振动要大于横向振动,楼柱的振动要比楼板的振动更加明显;不同基础条件下的建筑物垂向振级由大到小的排序为筏形基础>浅基础>短桩基础>长桩基础,横向振级由大到小的排序为浅基础>短桩基础>长桩基础>筏形基础,长桩基础对降低加速度振级最为有利。  相似文献   

20.
采用嵌入式环境振动智能监测系统,获得了紧邻地铁车站的地下商业建筑楼板铅垂向加速度时程谱与傅里叶谱。对优势频率振动能量衰减规律进行了拟合分析,获得了二次振动影响范围;通过铅垂向Z振级计算,对该地下建筑环境振动状况作出了评价,并给出了振级随距离衰减关系的数学模型。研究成果可为类似工程提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号