首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
为研究地铁列车振动对上方古建筑的影响规律,基于西安地铁4号线下穿和平门区段,建立不同行车速度组合工况有限元振动分析模型,用来分析和平门古建筑群的振动响应规律。并进行中国古建筑结构允许振动速度评价标准的比选、推导和确定,由结果可知:地铁单向或对向通过城墙时,不同车速对峰值位移几乎没有影响。城墙的峰值速度、加速度随着车速的增大而增大,在车速为80 km/h时达到最大。桥体在两种运行模式下的峰值位移、速度、加速度变化趋势与城墙相同,但最终值较大。综合比较,列车80 km/h对向行驶为最不利情况,此时城墙和桥体的速度、加速度分别为0.160,0.667 mm/s和0.679,2.998 mm/s~2。护城河桥的振动以竖直方向为主,而城墙在列车运营时主要呈水平方向振动。桥体的水平振动速度略大于城墙,且两者均小于容许水平振动速度,因此该地铁运营过程中可保证古建筑运营安全。  相似文献   

2.
基于某地铁线路以极小净距下穿京张高铁盾构隧道工程,采用人工激振函数模拟列车振动荷载,分析不同工况下的隧道动力响应特性,探讨了高铁隧道结构的振动加速度、振动速度及竖向位移规律。模拟研究结果表明:隧道监测点振动幅值变化不仅与振动强度有关,还与激振源荷载作用位置有关,高铁隧道中心截面前后±15 m范围内的位移响应最大;隧道交叉位置呈现显著的振动放大现象,造成列车动荷载影响下衬砌结构薄弱区;振动响应总体趋势为自仰拱向拱顶逐渐衰减,即仰拱为隧道振动响应的最不利位置;考虑不同工况,高铁隧道结构的最大振动加速度、振动速度和竖向位移分别为110.204 mm/s~2、3.006 mm/s、0.043 4 mm,低于结构安全振动控制标准的限值,满足安全要求。  相似文献   

3.
对上海轨道交通9号线某区间缓和曲线段地铁运行引起的地表振动进行了现场测试,并对实测的地表振动加速度进行了时域、频域及1/3倍频程分析。结果表明:在缓和曲线段,地铁列车行驶引起的地表横向加速度有效值是竖向加速度有效值的0.9~3.1倍;地表加速度频率分布在30~120 Hz,其中最显著的频率为30~50 Hz;加速度振级随着与隧道中心线水平距离的增加呈减小趋势,且在距离隧道中心线5 m、30 m时出现放大区;地表土体振动加速度幅值、频谱峰值随着地铁列车速度增大基本呈增大趋势。  相似文献   

4.
以南昌地铁1号线的某标段工程为研究背景,建立曲线地段的轨道—隧道—大地三维有限元模型,同时考虑竖向和水平向轮轨作用力的影响,计算得到了地铁列车通过曲线时诱发的环境振动。计算结果表明:当曲线的半径一定时,地铁在曲线地段运行引起的钢轨、隧道壁和地面振动响应均与列车行驶速度密切相关;曲线地段地面水平向振动加速度级要大于竖向,平均高出5 d B;水平向和竖向振动加速度级均表现出随着与隧道中心线间距离的增加而呈波动性衰减特性,频率越高振动加速度级衰减的速度越快;环境振动在衰减过程中都会出现放大区,竖向和水平向的振动放大区出现的位置有所不同,但振动放大区的主频差别不大。  相似文献   

5.
通过对我国某型地铁列车进行隧道空气动力学实车线路试验,得到地铁列车实际运行过程中车内、外压力变化规律。试验结果表明:该型地铁列车车内压力变化满足我国地铁设计规范舒适度评价标准及美国地铁人体舒适度评价标准。地铁列车运行过程中,最长隧道区间的车内、外压力变化幅值明显大于其它隧道;列车以不同速度和模式运行中,车内1.0 s、1.7 s、3.0 s时的压力变化幅值和车外各测点压力变化幅值均不相同,车体表面测点压力变化由车头至车尾方向呈逐渐减小的趋势。  相似文献   

6.
为评估某试验室新建高速列车转向架激振试验台对试验厂房的振动影响,基于车辆-轨道耦合系统动力学模型,计算钢轨波磨不平顺作用下轮轨垂向高频激振荷载,并将其作用于Abaqus基础-地基-厂房有限元动力仿真模型,分析高频激振试验台对试验厂房的振动影响。结果表明:车辆最高模拟速度500 km/h下,受轨道不平顺激扰将产生轮轨高频激振荷载,最高荷载频率1 200 Hz,荷载峰值为213.9 kN;试验台振动影响范围在地面大致集中于以激振台为中心,半径为10 m的“圆形”区域,在深度方向上集中于深度约15 m的“倒梯形”区域;厂房柱下独立基础最大竖向动位移幅值为0.032 mm,最大加速度幅值为32.8 cm/s2,屋架与厂柱连接薄弱处最大振动速度幅值为0.585 mm/s,地面水平方向的振动速度幅值小于2 mm/s,振动指标均小于建筑安全及工作舒适性的幅值控制标准,表明高频激振试验台工作时试验室厂房振动符合要求。  相似文献   

7.
根据某地铁曲线地段现场实测数据,针对钢弹簧浮置板浸水对其减振效果及振动传递的影响进行分析。结果表明:作为特殊减振轨道结构,钢弹簧浮置板能有效地衰减道床面与隧道壁之间的振动传递,正常工作时加速度级最大衰减量(传递损失)高达44.3 d B;浸水后在10~200 Hz频段,随着浸水量增加,道床面的加速度级逐渐减小,隧道壁的加速度级逐渐增大,道床传递至隧道壁的传递损失值逐渐减小,单侧浸水测试断面传递损失值减小至25~35 d B,两侧浸水测试断面传递损失值则降至10~25 d B;正常浮置板、单侧浸水及两侧浸水测试断面道床面至隧道壁的垂向传递函数值基本范围分别为0~0.01、0.01~0.05和0.04~0.3,依次呈增大趋势。这说明,作为振动传导体,水对10~200 Hz频段的振动传递影响显著。  相似文献   

8.
根据某地铁曲线地段现场实测数据,对钢弹簧浮置板浸水对其减振效果及振动传递的影响进行分析。结果表明:作为特殊减振轨道结构,钢弹簧浮置板能有效地衰减道床面与隧道壁之间的振动传递,正常工作时加速度级最大衰减量(传递损失)高达44.3 dB;浸水后,在10~200 Hz频段,随着浸水量增加,道床面的加速度级在逐渐减小,隧道壁的加速度级在逐渐增大,道床传递至隧道壁的传递损失值逐渐减小,单侧浸水测试断面传递损失值减小至25~35 dB,两侧浸水测试断面传递损失值则降至10~25 dB;正常浮置板、单侧浸水及两侧浸水测试断面道床面至隧道壁的垂向传递函数值基本范围分别为0~0.01、0.01~0.05和0.04~0.3,依次呈增大趋势。这说明:作为振动传导体,水对10~200Hz频段的振动传递影响显著。  相似文献   

9.
以新建佛莞城际铁路盾构隧道与广州地铁3号线明挖段矩形隧道交叠并行工程为依托,研究地铁列车通过明挖隧道时产生的振动荷载对下部新建盾构隧道衬砌结构的动力响应,并对不同列车振动荷载下新建盾构隧道衬砌结构的动应力进行了分析.使用激振力函数法模拟地铁列车振动荷载,选取下部新建盾构隧道典型监测断面的监测点来研究在地铁列车振动荷载作用下衬砌结构的振动加速度、应力和竖向位移响应特性.结果 表明:轨道结构质量越差,列车运行速度越快,车体质量越大,列车振动荷载的幅值也相应增大;在地铁列车振动荷载作用下新建盾构隧道衬砌结构存在着明显的动力影响区;新建盾构隧道衬砌管片竖向位移曲线呈"W"形,且拱顶处的竖向位移幅值最大;随着地铁列车运行速度加快,新建盾构隧道的竖向沉降亦随之增大,地铁列车运行速度每增加30 km/h,隧道衬砌结构的竖向沉降平均增加2.66%.  相似文献   

10.
目的:为了探究轨道的多种随机不平顺(高低、水平、轨距和轨向)在不同列车速度下对地铁隧道壁垂向振动加速度和轮轨力的影响,以提升行车品质,特进行本研究。方法:以地铁A型车为例,运用动力学分析软件建立考虑柔性轮对的车辆刚柔耦合系统动力学模型。将轨道和轮对视为柔性体,其余部件视为刚体,通过施加多种随机不平顺和改变车辆速度并考虑波磨来模拟不同工况,进行仿真计算。同时采用快速傅里叶变换方法对仿真计算结果进行时域和频域分析,研究隧道壁和轮轨力的振动特性。结果及结论:研究结果表明:随着车辆运行速度的增大,隧道壁垂向振动加速度的峰值有所提高,优势频率分布范围会有稍许扩大,高频成分增多;车轮间相互作用加剧,垂向轮轨力有所增大;隧道壁在4~200 Hz范围内的振动主频为63 Hz,不随速度变化而变化,但加速度级峰值会有所增大。  相似文献   

11.
采用2种不同刚度的扣件,对地铁振动传播途径各主要部位进行了振动测试,获得了各部位相应的振动加速度时程数据。首先,统计了时域振动加速度峰值及其变化情况;然后,通过傅里叶变换计算了各部位振动的频谱,对比分析了振动在传播过程的频谱变化规律;最后,计算分析了地表Z振级变化。结果表明,扣件刚度在一定范围内变化,对60 Hz附近的振动峰值影响有限,隧道壁和地表的竖向及横向振动振级分别在650 Hz和340 Hz附近迅速下降,之后趋于平缓。使用刚度较小的扣件有利于减小地表竖向振动,但不利于减小地面横向振动。  相似文献   

12.
为研究地铁列车提速对减振垫浮置板轨道的振动特征的影响,对比分析地铁列车行车速度为80 km/h和120 km/h工况下减振垫浮置板轨道时域和频域的实测结果。分析结果表明:行车速度对减振垫浮置板轨道结构垂向位移的影响不大;行车速度为120 km/h的工况下钢轨、浮置板、隧道的振动加速度1/3倍频程的峰值较行车速度为80 km/h的工况下的峰值分别有6.2、2.8、0.5 dB的增大;分频段分析各测点振动加速度综合振级,结果显示:在0~20 Hz与20~80 Hz频段内,只有钢轨的振动加速度综合振级增长超过5%,浮置板与隧道振级变化均小于2.5%,在80~120 km/h速度范围内,行车速度的提高对减振垫浮置板轨道隧道振动的影响并不明显。  相似文献   

13.
在地铁区间为小半径曲线、地面无干扰振源并可以布置高密度测点的珍贵测试条件下,采用高灵敏度数据采集与分析系统,对北京地铁某曲线段进行地面振动测试。根据测试数据,研究地铁列车通过曲线段时引起地面振动加速度的时域和频域内传播规律。结果表明:在距离隧道中心线100m范围之内,地铁运营引起地面振动加速度的时程峰值主要在10-2 m·s-2量级,远大于背景振动下的10-4 m·s-2量级;在距离隧道中心线50m范围之内,水平振动强度是竖向振动强度的2~4倍,建议在涉及曲线段地铁的环评中应同时考虑竖向振动和水平振动的影响;水平振动加速度的主要频率成分为30~120Hz,建议在关于曲线段地铁的试验、测试和模拟中应选取较宽的频率分析范围;地面振动加速度频谱幅值随着与隧道中心线间距离的增加而呈波动性衰减。  相似文献   

14.
为研究高铁列车和地铁列车同向以不同速度行驶时的振动对高铁隧道衬砌结构的影响,采用模拟的列车振动荷载,在铁轨上施加对轮轴的模拟振动荷载并考虑列车速度来研究同向列车振动荷载下高铁隧道衬砌的动力响应特性。结果表明:在同向行驶的列车振动荷载作用下,对于隧道特定监测点而言,存在一个列车行驶振动响应的影响区,列车行驶至该监测点时,其振动响应最大;高铁隧道中部横断面衬砌振动响应从上到下逐渐增大,拱脚、拱底竖向应力幅值分别为拱腰的1.63、2.26倍,加速度最大幅值分别为拱腰的1.21、1.29倍。  相似文献   

15.
涂勤明 《铁道建筑》2020,(5):135-138
对中等减振扣件轨道、梯形轨枕轨道、钢弹簧浮置板轨道、普通整体道床轨道进行环境振动现场实测,对比分析地铁列车通过时不同轨道的钢轨、道床、隧道壁振动加速度(垂向、横向)及钢轨动态变形(垂向、横向).结果表明:4种类型轨道的钢轨振动加速度相差不大;中等减振扣件轨道的道床振动加速度小于普通整体道床轨道,另外2种减振轨道明显大于普通整体道床轨道;钢弹簧浮置板轨道的隧道壁振动加速度明显小于其他轨道;钢弹簧浮置板轨道减振效果最好;中等减振扣件轨道的钢轨动态变形明显大于其他轨道.  相似文献   

16.
地铁B型车牵引能耗与再生制动节能效果分析   总被引:1,自引:0,他引:1  
通过模拟列车运行速度曲线,分析列车的牵引耗电量和再生制动的节能效果;探讨地铁运营的节能措施,提高运营管理水平。通过对大量列车牵引计算图的分析,获得了地铁B2型车和B1型车日常运营的启动加速度、制动减速度、列车旅行速度、牵引耗电量、列车单位耗电量以及再生制动的节能效果;比较了运行速度由80 km/h提高到100 km/h的运行效果;探讨了地铁车辆选型的基本原则,对工程设计和运营管理具有一定的参考价值。  相似文献   

17.
建立了车-线-隧道耦合动力学模型,输入实际的列车、轨道、隧道承力结构参数,获得地铁列车运行时的隧道承力结构动态激励。在此基础上,综合运用有限单元法和无限边界元法,建立了隧道-土体-建筑动力耦合模型,分析隧道周围土体及沿线建筑物的受振特性,探析地铁列车振动对环境的影响规律。结果表明:地铁列车运行引起周围环境的二次振动为低频振动,且主要为竖向振动和横向振动;列车通过时,地面竖向振动最大值出现在距离隧道中心线10 m处,竖向振动加速度除了在距离隧道中心线45 m点出现反弹外,其他各点的振动加速度幅值基本上都是随着距离的增加而逐渐减小;随着传播距离的增加,较高频率的振动成分幅值衰减较快。  相似文献   

18.
更换减振扣件前后地铁运营引起地面振动的研究   总被引:2,自引:0,他引:2  
选择北京地铁5号线宋家庄—刘家窑区段,在更换减振扣件前后2次测试地铁正常运营引起的地面水平及垂向振动加速度,对其进行频谱分析;建立轨道—隧道—土层的三维有限元模型,利用实测数据,研究垂直于地铁线路方向不同距离的振动加速度响应规律。结果表明:地铁线路位于曲线段时,地面水平与垂向振动加速度峰值和有效值基本相等;在安装DTⅥ2扣件的轨道地段,地铁列车运营引起的地面主要振动频率为40~80 Hz,在安装Vanguard扣件的轨道地段为20~40 Hz,说明Vanguard扣件有较突出的减振效果;随着距地铁隧道中心线距离的增加,地面振动加速度响应表现出衰减的趋势,在离开隧道轴线一定距离处,存在地面振动加速度放大区,水平和垂向振动加速度放大区的位置有所不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号