首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为探究活动支座摩阻对大跨连续梁桥上无缝线路梁-轨相互作用的影响,基于梁-轨相互作用及有限元理论,将活动支座摩阻等效为非线性弹簧,建立可考虑活动支座摩阻的连续梁桥上无缝线路空间耦合模型,对考虑活动支座摩阻前、后的钢轨及桥墩结构受力变形展开对比分析。结果表明,活动支座摩阻增强了连续梁与无缝线路的纵向约束,当活动支座摩阻率从0增大至0.06时,温度作用下,连续梁桥上钢轨纵向力及梁轨相对位移峰值分别减小了24.32%和29.89%,连续梁桥固定墩纵向力增加了2.44倍;制动荷载作用下,钢轨制动力、梁轨相对位移及连续梁桥固定墩纵向力分别减小了53.51%、56.94%和41.63%;断轨工况下,部分断轨力通过活动支座摩阻传递给非固定墩,连续梁桥固定墩纵向力减小了60.64%,钢轨断缝值减小了3.3%;活动支座摩阻对大跨连续梁桥上无缝线路及桥墩纵向力影响较大,建议在大跨连续梁桥上无缝线路及桥墩设计中考虑活动支座摩阻的影响。  相似文献   

2.
(48+80+48)m连续梁桥与轨道系统地震响应规律研究   总被引:1,自引:1,他引:0  
为研究高速铁路连续梁桥-轨道系统地震响应规律,采用非线性弹簧模拟线路纵向阻力,建立考虑轨道及下部结构的(48+80+48)m连续梁桥-轨道系统仿真模型,分析温度、活载和制动作用下桥上无缝线路梁轨相互作用纵向力分布规律,在此基础上,研究地震作用下连续梁桥-轨道系统动力响应特性。研究表明:温度、活载及列车制动作用下梁轨相对位移、钢轨应力等均在桥台附近取得极大值,地震频谱特性对梁轨系统动力响应有很大的影响。  相似文献   

3.
大跨度连续梁拱组合桥梁轨互制特征   总被引:1,自引:1,他引:0  
为研究大跨度连续梁拱组合桥梁轨相互作用特征,以梅汕线上某(34+160+34)m刚架系杆拱钢箱连续梁组合桥为背景,采用理想弹塑性模型模拟线路纵向阻力,建立"轨-拱-梁-墩"一体化空间模型,对钢轨纵向力的分布规律进行分析,对是否考虑轨道作用下的主梁应力、梁端转角、墩底纵向反力进行比较。结果表明:连续梁拱组合桥远离固定支座的梁端处钢轨纵向力较大,其中最大伸缩应力达到114.0 MPa,在不设钢轨伸缩调节器时钢轨强度仍满足要求;轨道结构对温度荷载和制动力作用下的主梁应力影响较大;轨道结构对梁端转角及墩底纵向反力的分配亦有较大影响。  相似文献   

4.
拱桥在我国高速铁路中应用日益广泛,而不同形式大跨度拱桥上无缝线路纵向力分布规律仍有待探明。以112 m提篮拱桥、140 m钢箱系杆拱桥、(24+160+24)m系杆拱桥及(52+382+52)m钢箱拱桥4种不同形式拱桥为例,建立考虑轨道、梁体、吊杆和拱肋的拱桥-轨道系统精细化仿真模型,深入分析钢轨伸缩调节器对纵向力的影响,揭示复杂温度、竖向活载、列车制动及地震作用下大跨度拱桥与轨道相互作用规律,探讨加载历史对拱桥-轨道系统受力特性的影响。研究结果表明,在温度荷载、竖向活载、列车制动和纵向地震作用下,钢轨应力极值均出现在梁端附近,在梁端设置钢轨伸缩调节器能有效降低钢轨应力;与挠曲力、制动力相比,梁体温度变化引起的伸缩力为主要控制性荷载,吊杆和拱肋的温度变化对拱桥上钢轨纵向力影响较小;地震作用下梁端附近钢轨应力极值达到635.5 MPa;检算墩顶水平力时,应采用考虑加载历史影响的分析方法,计算结果更安全。  相似文献   

5.
针对我国高速铁路桥上CRTSⅡ型板式无砟轨道梁-板-轨相互作用问题,采用有限元法分别建立双线多跨简支梁桥和大跨连续梁桥上CRTSⅡ型板式无砟轨道无缝线路精细化空间耦合模型,考虑桥梁及轨道结构的细部尺寸与力学属性,计算列车荷载作用下各轨道及桥梁结构的挠曲力与位移,分析扣件纵向阻力、滑动层摩擦因数等参数对桥上无缝线路挠曲受力与变形的影响规律。研究结果表明:列车荷载作用下大跨连续梁桥上轨道结构的受力与变形要明显大于多跨简支梁桥,单线加载时有载侧和无载侧之间相差不大,且近为双线加载时的1/2;需要根据不同的检算部件选取最不利的列车荷载作用长度;采用小阻力扣件改善钢轨受力与变形时,固定支座桥台和连续梁活动支座桥墩处的轨板相对位移应加强观测;滑动层摩擦因数、固结机构纵向刚度及固定支座墩/台顶纵向刚度均需控制在合理范围内。  相似文献   

6.
基于梁轨相互作用原理,针对下承式拱桥的受力特点,建立下承式拱桥上无缝线路纵向力计算模型,分析了6种不同的铺轨方案,并从中比选出最佳的铺设方案,在此基础上分析了拱肋、吊杆、荷载工况、墩台刚度等对纵向力的影响。分析结果表明:在连续梁左端布置1组单向钢轨伸缩器且尖轨位于拱桥左边跨时,钢轨纵向力最小;拱肋、吊杆对钢轨伸缩力影响较大,对钢轨制动力和断缝值影响较小;计算钢轨制动力时建议选取拱桥全跨布载,计算断缝值时建议在连续梁梁端附近设置断轨,计算结果具有较大的安全储备;列车运行时拱肋受拉,建议下承式拱桥拱肋采用钢管混凝土结构。  相似文献   

7.
大跨度提篮拱桥上无缝线路设计关键技术研究   总被引:2,自引:0,他引:2  
研究目的:通过研究提篮拱桥在温度变化、列车荷载作用下的变形规律,并建立铺设无砟轨道的大跨度提篮拱桥无缝线路的非线性有限元计算模型,进行梁轨相互作用分析,计算铺设无砟轨道的140 m跨径提篮拱桥上无缝线路变形、纵向力、伸缩位移、挠曲位移,为桥梁和无缝线路设计检算提供支持.研究结论:在计算提篮拱桥的伸缩力时,可采用与常见简支梁或连续梁相同的方法计算梁的伸缩位移量;在列车荷载作用下提篮拱产生的最大挠曲位移明显小于伸缩位移,钢轨挠曲力较钢轨伸缩力小,挠曲力一般不控制轨道检算,但可能控制墩台的设计检算.  相似文献   

8.
为探讨大跨度斜拉桥上无缝线路纵向受力与变形规律,以一座多线预应力混凝土斜拉桥为例,采用有限元法建立了"塔-索-梁-轨"空间耦合有限元模型,分析了温度荷载、列车荷载以及制动荷载对桥上无缝线路纵向受力与变形的影响。结果表明:当桥塔温度变化时,钢轨伸缩力、钢轨纵向位移和桥梁的纵向位移均无明显变化,钢轨伸缩力最大幅值出现在连续梁两部,并在简支梁梁缝处出现峰值;在列车荷载作用下,各条线路的钢轨挠曲力和钢轨纵向位移随着距加载线路距离的增大而逐渐减小,钢轨挠曲力最大幅值出现在连续梁端部;在制动荷载作用下,钢轨制动力最大幅值出现在连续梁端部,并在加载的起点与终点出现峰值突变,加载的起点或终点与连续梁端部重合时为最不利位置。研究结果可为大跨度斜拉桥上无缝线路设计提供理论参考。  相似文献   

9.
大跨度多跨连续梁桥上无缝线路结构设计,不仅在于合理的设置钢轨伸缩调节器及轨道结构,而且固定支座的合理布置同样对减小梁、轨之间的相互作用,并防止线路爬行,保证轨道结构的安全也起着至关重要的作用,本文以某大跨度多跨连续梁桥为例,选定合理的轨道结构型式及桥梁支座布置型式,计算分析伸缩调节器的设置及桥梁固定支座布置对桥上无缝线路纵向力的影响.  相似文献   

10.
为指导高速铁路跨海超长联连续梁桥上无砟轨道无缝线路设计,基于梁轨相互作用原理及多体动力学理论,通过建立无砟轨道-多跨连续梁桥静力学分析模型与高速车辆-无砟轨道-连续梁桥耦合动力学分析模型,对超长联跨海连续梁桥上无砟轨道无缝线路的静、动力学特性进行分析研究。研究结果表明:(60+37×80+60) m连续梁温度跨度超长,须铺设钢轨伸缩调节器以降低钢轨应力;进行超长联跨海连续梁桥上无缝线路设计与检算时,应考虑活动支座摩阻力的贡献和影响;设置伸缩调节器后,连续梁桥上无缝线路钢轨受力、断缝值等各指标均能满足安全性要求;列车荷载作用下,车辆、轨道、桥梁的各项指标均满足动力性能评价要求;为保证轨道系统安全服役,建议加强混凝土连续梁伸缩调节区域轨道状态的调整、在线监测与科学维护。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号