首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
建立无砟轨道系统高频振动边界元模型,运用有限元和边界元相结合的方法,将已经计算出的轨道系统垂向高频振动响应作为声辐射计算边界条件,得到钢轨与轨下结构的声辐射特性。分析结果表明:钢轨和轨道板对噪声的贡献量中,在800~3 000 Hz时主要是以钢轨的声辐射为主,在0~500 Hz时主要以轨道板的声辐射为主;随着距离的增长,轨道系统的声辐射呈线性递减趋势;钢轨部位声辐射要比轨道板部位的显著,平均大15 dB左右,轨腰的声辐射量要比钢轨其他部位的显著。本文预测轨道系统噪声的结果与其它模型得出的结果都有很好的一致性,说明本文的模型与做法是合理可行的,为以后的铁路减振降噪提供了理论依据。  相似文献   

2.
为研究无砟轨道声辐射特性,建立了CRTSⅠ型板式无砟轨道的波数有限元振动模型。在钢轨顶部施加单位谐荷载,以求出的钢轨及轨道板的振动速度响应为边界条件,再采用声学波数边界元法计算出钢轨、轨道板及轨道整体结构的声辐射特性。分析结果表明:钢轨、轨道板及轨道整体结构的声功率级在一阶峰值频率前随频率增大而近似线性增加,在一阶峰值频率后,声功率级波动较大且出现多个峰值。在轨道整体结构一阶峰值频率前轨道板的声辐射贡献量占主导,而在该峰值频率后钢轨声辐射的贡献量逐渐占主导作用。扣件刚度主要影响一阶峰值频率前轨道整体辐射声功率,随着扣件刚度的增加,轨道整体结构声功率级幅值明显降低。CA砂浆层弹性模量的变化对轨道板辐射声功率级影响较大,但对轨道整体结构辐射声功率级的影响较小。  相似文献   

3.
为解决有限截取长度轨道模型边界振动反射波的干扰问题,基于周期结构原理,建立无反射边界的有限元轨道模型,分析弹性短轨枕轨道的隔振性能、轨道各结构的声辐射特性,以及不同轨枕下支承刚度对其振动和声辐射特性的影响。结果表明:基于周期结构原理建立的轨道模型能够消除边界反射波的影响,从而准确地反映轨道的振动特性;弹性短轨枕轨道的隔振率在整个频率段稳定在1,同普通板式轨道相比具有较为优良的隔振性能;弹性短轨枕轨道的总辐射噪声频率为0~240 Hz,轨下结构为主要贡献源,在频率高于240 Hz时钢轨成为轨道总辐射声功率的主要贡献源,在频率为1 020 Hz时轨道总声功率出现峰值,这与钢轨的Pinned-Pinned共振有关;为兼顾弹性短轨枕轨道的减振和降噪性能,轨下支承刚度应为40~160 MN·m~(-1)。  相似文献   

4.
利用有限元统计能量法,建立不同频段振动的计算模型,分析交通荷载在2.5~500Hz频段时箱形梁结构振动噪声的频域空间特性,并计算高架箱形桥梁各板单元对远场点声压的贡献量。结果表明:轮轨力作用下,箱形梁振动和结构噪声的最大幅值频率均为50Hz,也是轮轨力最大幅值对应的频率;高架箱形桥梁结构振动响应优势频率集中在31.5~100Hz频段,与轮轨力优势频率范围一致;荷载作用下箱形梁各板单元的振动和声压辐射响应规律大致相同,振动和声压辐射响应由大到小依次为顶板、翼板、腹板;与其他板单元相比,箱形梁顶板的声压贡献量较大,在远场点达到总声压的70%。采用FE-SEA混合法预测箱形梁结构噪声能够保证精度,提高计算效率,并扩展结构噪声研究的频率范围,提高了预测精度。  相似文献   

5.
基于车-线-桥耦合振动和统计能量分析,提出铁路钢-混结合梁桥车致振动与结构噪声的理论计算方法。车-线-桥耦合振动分析中,采用有限元方法建立梁-板混合模型,计算桥面板的振动能量,代入并求解统计能量平衡方程,得到桥梁各子系统间的振动能量传递,根据桥梁各构件的振动响应计算桥梁辐射的结构噪声。通过对某三跨钢-混结合梁桥辐射噪声进行现场实测,验证了理论预测模型。分析结果表明:结合梁桥结构噪声主要位于20~1 000Hz频段,计算此类桥梁结构噪声时截止频率可以取1 000Hz;计算主跨跨中断面距近轨不超过25m场点的结构噪声时,可忽略邻跨的影响;全频段内下翼缘辐射噪声最小,315 Hz以上频段以腹板辐射噪声为主,315Hz以下频段以桥面板和钢梁腹板辐射噪声为主。  相似文献   

6.
钢轨声辐射特性的数值计算方法   总被引:4,自引:0,他引:4  
魏伟  聂春戈 《铁道学报》2006,28(5):78-82
声辐射系数是轮轨噪声预测的重要参数,用边界元方法预测声辐射系数,并以钢轨为例,计算了垂向和横向声辐射系数。计算结果表明:625 Hz以下,钢轨的横向、垂向声辐射系数随频率呈线性变化;1000 Hz以下钢轨的横向声辐射系数强于垂向声辐射系数;1000 Hz以上垂向声辐射系数大于横向声辐射系数,垂向声辐射系数在1000 Hz以上有两个峰值,分别在2000 Hz和5000 Hz;在1500 Hz~3000 Hz范围内钢轨垂向声辐射系数较大,这个频率内以垂向振动对声的贡献最大,这也是钢轨噪声的主要贡献频率;在5000 Hz附近要弱于2000 Hz附近的声辐射系数。该方法能很好地预测结构的声辐射系数,较好地解决了振动与噪声之间的联系问题,为轮轨噪声预测开辟了一条途径。  相似文献   

7.
轨下支承参数对钢轨声振特性影响研究   总被引:1,自引:0,他引:1  
钢轨辐射噪声是轮轨噪声的主要组成部分,轨下支承参数对钢轨的振动与声辐射有着较大的影响。为研究轨下支承参数对钢轨声振频域特性的影响,基于FEM/BEM方法,建立钢轨振动力学模型和声学边界元模型,分析轨下扣件支承间距、支承刚度和支承阻尼对钢轨声振特性的影响规律。结果表明:扣件支承间距对钢轨的声振特性影响不明显;在20~200 Hz之间,合理大小的扣件支承刚度可以有效地减少钢轨振动与声辐射;合理大小的扣件支承阻尼可以有效地减少钢轨振动的频率范围为20~2 000 Hz,合理大小的扣件支承阻尼可以有效地减少钢轨声辐射的频率范围为100~1 000 Hz;扣件支承阻尼对钢轨声振特性影响的频域明显要宽于扣件支承刚度。  相似文献   

8.
为探讨轨道交通桥梁结构噪声分布规律及评价采取轨道减振措施后的降噪效果,以某轨道交通高架线路为例,采用有限元与边界元相结合的方法分析有无隔振措施时桥梁振动及其引起的结构噪声,其中主要分析钢弹簧浮置板轨道、减振扣件轨道和橡胶减振垫轨道3种轨道减振措施。结果表明:单箱单室箱梁辐射声能量主要集中于31.5~125 Hz,噪声峰值出现在40~63 Hz;列车运行速度越大,桥梁结构噪声辐射总声压级越大;采取隔振措施后结构噪声可降低约5.6~16.6 dB(A),其中钢弹簧浮置板轨道降噪效果明显优于橡胶减振垫轨道和减振扣件轨道。  相似文献   

9.
研究目的:目前,轨道刚度变化对车辆-轨道耦合系统频率响应的影响规律尚不明确,本文基于车辆-轨道耦合动力学理论,以既有提速线路为例,从频率角度,研究轨道刚度变化对车辆-轨道耦合系统振动响应的影响。研究结论:(1)轨道刚度的变化,对车体、转向架的振动影响较小,对轮对及轨道结构的振动影响较大;轨道刚度的增大,对27 Hz以下的低频振动基本无影响,27~70 Hz之间的中低频振动略有降低,100 Hz以上的中高频振动显著增大;(2)随扣件刚度的增大,轮轨力谱以及轮对、钢轨振动加速度谱的最大值均显著增大,且振动频率有向高频发展的趋势;(3)随道床刚度的增大,频率响应谱的最大值变化相对较小,轮轨力、轮对、钢轨和轨枕的振动频率向高频移动;(4)总体上看,扣件刚度对耦合系统振动响应的影响较大,在线路维修时应及时更换恶化的扣件系统,道床刚度变化的影响相对较小,其维修周期可适当延长;(5)该研究可指导轨道结构的优化设计以及轨道的养护维修。  相似文献   

10.
铁路32 m混凝土简支箱梁结构噪声试验研究   总被引:1,自引:0,他引:1  
以32 m单线和双线单室混凝土简支箱梁为对象,通过噪声试验、结构有限元和声学有限元分析,研究箱梁结构噪声的声辐射特性、峰值频率产生的原因及评价方法.结果表明:列车通过桥梁时,离箱梁表面较远处的噪声级起伏不大,可采用稳态算法简化分析;混凝土箱梁的结构噪声主要分布在250 Hz以下,且随频率的增加而迅速衰减,因此理论预测时可将250 Hz作为截止频率;单线和双线箱梁的2个噪声峰值频率分别为63和160 Hz,以及50和315 Hz,二者均在第1个峰值频率处达到最大声压级,且此峰值频率处的噪声具有明显的有调性;不同箱室尺寸箱梁的结构噪声声辐射差异较大,车速并不是噪声的第一决定因素;混凝土箱梁结构噪声的峰值频率出现在声辐射效率和振动响应均较大处,因此应避免结构振动模态和空腔声学模态重合而导致空腔共鸣引起的噪声被放大;建议修订铁路噪声相关规范时,考虑混凝土箱梁低频结构噪声的危害.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号