首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
结合高铁实训基地无砟轨道的施工,从下部基础评估及施工、施工测量、底座及凸形挡台施工、轨道板铺设及精确调整、水泥乳化沥青砂浆和凸形挡台周围树脂灌注,介绍CRTS Ⅰ型板式无砟轨道施工技术.  相似文献   

2.
桥上纵连板式轨道借助底座板的纵连解决梁端转角对轨道结构的不利影响,通过设置滑动层来削弱梁轨相互作用,这种设计思想对桥上铺设无缝道岔具有积极的借鉴意义.基于梁轨相互作用原理和有限元方法,采用梁单元和弹簧单元模拟各结构层,建立桥上纵连板式轨道无缝道岔纵向力计算模型,对多跨简支梁桥进行温度力计算,分析轨道板和底座板伸缩刚度变化、滑动层摩擦系数的影响.  相似文献   

3.
CRTSⅠ型板式无砟轨道路基沉降抬板维修技术研究   总被引:2,自引:2,他引:0  
由于地质条件、建设施工等原因,部分高速铁路路基出现不同程度的沉降,影响行车的平顺性。介绍高速铁路CRTSⅠ型板式无砟轨道路基沉降抬板维修方案的若干技术问题,提出抬板高度及抬板填充材料刚度的合理取值。CRTSⅠ型板式无砟轨道路基沉降可通过扣件调整和抬升轨道板增加充填层厚度等方式进行整治维修。为保证抬升轨道板后凸型挡台受力,建议圆形凸台地段抬板高度最大不超过45 mm,半圆形凸台地段不应进行抬板。轨道板抬升采用的填充材料刚度宜与原CA砂浆层保持一致。  相似文献   

4.
正CRTSⅡ型板式无砟轨道结构由钢轨、弹性扣件、预制轨道板、CA砂浆调平层、连续底座板、滑动层、侧向挡块等部分组成,桥梁固定支座上方设置剪力齿槽固结机构,梁缝设置高强度挤塑板,台后路基上设置摩擦板、端刺及过渡板。底座板为轨道板的底座,是承接桥面系与道  相似文献   

5.
李立娜 《铁道建筑》2012,(8):110-112
结合武广客运专线武汉综合试验段CRTSⅠ型板式无砟轨道施工工艺试验研究,系统总结了CRTSⅠ型板式无砟轨道施工工艺,主要包括施工前准备、混凝土底座及凸形挡台施工、基准器测设安装、轨道板的运输、装卸及临时存放、轨道板初铺定位、轨道板精调、乳化沥青砂浆的制备和灌注、凸形挡台树脂灌注等施工中的设备、施工方法和验收标准。施工实践证明,高质量地完成CA砂浆调整层的施工才能保证轨道的整体性、稳定性和耐久性。  相似文献   

6.
大跨桥上减振型板式轨道凸形挡台受力分析   总被引:2,自引:0,他引:2  
以孔跨布置为(94+168+84)m的某预应力钢筋混凝土连续刚构桥为例,对减振型板式轨道凸形挡台进行受力分析,提出在进行大跨桥上板式轨道凸形挡台设计时,应考虑梁体上翼缘纵向位移使凸形挡台承受的附加力;对于本文算例,采用长度为3 920 mm短板时的混凝土凸形挡台受力仅为采用长度为4 930 mm长板的80%左右,短板对凸形挡台的结构设计更为有利。  相似文献   

7.
本文介绍了板式轨道在国内外使用情况的基础上。对板式轨道结构型式及设计关键技术特点进行了研讨,重点介绍板式轨道的主要部件轨道板、CA砂浆、凸形挡台等的设计思路探讨。  相似文献   

8.
减振型板式轨道合理刚度动力分析   总被引:4,自引:3,他引:1  
为了探明减振型板式轨道结构的合理刚度及其匹配关系,应用有限元分析软件建立了梁-实体动力学模型,并结合工程实际确定了轨下刚度和轨道板下刚度取值方案.在模拟落轴试验冲击荷载作用下,分析了减振型板式轨道结构的动力响应.结果表明,减振型板式轨道的扣件合理静刚度为30~50kN/mm,轨道板下板端胶垫刚度为0.07~0.18 N/mm3、板中胶垫刚度为0.06~0.15 N/mm3,此时可使各项动力学指标均处于比较合理的水平,有效降低轮轨动力冲击作用,起到较好的降噪减振效果.  相似文献   

9.
遂渝线路基上板式无碴轨道结构设计研究   总被引:1,自引:0,他引:1  
研究目的:本研究主要为了确定遂渝线无碴轨道综合试验段路基(刚性路基、土路基)上铺设板式无碴轨道的轨道结构参数。研究方法:利用有限元模型,路基按刚性路基、土路基、设与不设混凝土层、轨道板与底座伸缩缝是否对齐等多种工况进行轨道结构各层及基床表层的受力特性分析。研究结果:对于板式轨道没有必要在底座下设置混凝土层。土路基上轨道板与底座伸缩缝错开设置对轨道结构受力较为有利。研究结论:在刚性路基和土路基上,板式轨道可不设置支承层。土路基上设计板式轨道时应尽量减少底座伸缩缝的设置,同时应使轨道板与底座伸缩缝错开布置。刚性路基上设计板式轨道时可根据工程需要来确定轨道板与底座伸缩缝是否对齐。土路基上,在相同条件下,基床表层厚度由400 mm增加到700 mm,各层应力变化很小。  相似文献   

10.
《铁道建筑》2005,(11):81-81,100
总体来说,经过40年的运用和发展,高速铁路无碴轨道结构逐步形成两大技术体系,即日本的柔性充填层板式无碴轨道结构和德国整体式无碴轨道结构。这两大技术体系基本发展成熟,标志着其结构型式的统一,其中,日本板式无碴轨道结构统一为A型轨道板或框架轨道板、柔性CAM充填层和凸形挡台联结结构。德国虽然无碴轨道结构形式众多(多达99种),  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号