首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
阐述整流机组相关参数的计算方法,指出当前城轨牵引供电整流机组阀侧电压偏高是引起直流输出电压过高的原因,并根据理论计算提出阀侧电压的建议值.  相似文献   

2.
以城市轨道交通地面式超级电容储能装置为背景,针对空载电压波动下的储能装置阈值选择问题进行探讨,首先分析城轨供电系统中空载电压波动对再生能量回收的影响:1)更改储能装置放电电压指令,可以改变储能装置和整流机组能量输出的功率比例;2)传统恒定阈值放电策略将放电指令与放电阈值固定,因此储能装置放电时不能做到对放电功率的控制;3)采用固定阈值放电策略时,空载电压值的变化会影响储能装置放电输出能量的大小。然后提出充放电阈值动态调整控制策略,实验结果表明,对于不同的空载电压,改进后的控制策略可以根据空载电压放电指令进行动态调整,使储能装置与整流机组的能量输出比例恒定,从而维持放电时放出的能量不随空载电压的波动而变化。  相似文献   

3.
对整流机组联调试验若干问题的分析   总被引:2,自引:2,他引:0  
阐述了整流机组联调试验直流空载电压过高的原因;分析了导致不带平衡电抗器的整流机组直流负载拐点电流超出许可范围的成因;叙述了联调试验求得的额定直流电压调整率值过高是因为试验电流未超过拐点电流,介绍了采用降低网压求取额定直流电压调整率的等效试验法;结合试验数据,说明了压仓电阻的主要作用。  相似文献   

4.
分析牵引整流系统中理想空载整流系数、额定空载整流系数与整流脉波数的关系,牵引整流变压器阀侧与网侧容量的关系、阀侧电压的选取及额定直流电压调整率的计算,讨论直流负载临界电流的计算方法及与牵引整流变压器阻抗参数的关系。  相似文献   

5.
直流牵引变电所在供电系统运行仿真中的建模   总被引:5,自引:0,他引:5  
讨论了直流牵引变电所在供电系统运行仿真中的建模问题。直流牵引变电所主要由整流变压器和硅整流器构成。在进行直流牵引供电系统的运行仿真时,将其按戴维南电路建模,其等效内电阻和理想电压源由交流电源和整流机组的参数以及负载情况决定。本文给出了12脉波整流机组的计算实例。  相似文献   

6.
分析了目前国内城市轨道交通交直流混合供电系统仿真研究的发展情况,基于PSCAD仿真软件建立了城市轨道交通交直流混合供电系统的主变电站、整流变压器和整流器等的仿真模型,实现了对直流牵引供电系统输出电压的仿真分析。通过仿真计算不同牵引变电站的输出电压波形,对比分析了牵引直流侧输出电压的差异性,并通过直流母线实际输出电压波形的对比分析,验证了仿真模型的有效性。  相似文献   

7.
算一算     
1.有一三相全波整流装置,其电路如图1所示。额定直流输出电压E_d、输出电流I_d分别为400伏、500安。求:变压器次边相电压有效值E(伏),相电流有效值I(安),容量P(千伏安)以及视在功率因数cosθ。假设直流输出电流完全平直,变压器次边绕组和整流元件的电压降为零。  相似文献   

8.
城市轨道交通牵引供电系统整流机组的接入与输出方案   总被引:1,自引:0,他引:1  
阐述了城市轨道交通牵引供电系统整流机组接入与输出方案.在此基础上对各方案进行了经济、技术分析,指出其优缺点和适用场合,并结合实际情况分析了其运行方法.接入时一般选择两套整流机组分别通过两台断路器与交流母线相连的方案,输出时可采用电动隔离开关或直流快速断路器.  相似文献   

9.
针对城市轨道牵引供电系统中供电臂末端电压偏低、供电距离短等问题,提出了通过改进原有直流牵引变电站24脉波整流机组输出电压,再通过Buck电路降压至牵引供电所需电压,并在两所变电站的中点增设一组由PID控制电路控制的Buck变换装置给牵引负荷供电,从而达到提高供电臂末端电压和延长供电臂的目的。在提出设计原理的基础上基于Matlab/Simulink搭建仿真模型,通过比较原有直流牵引供电系统和新型直流牵引供电系统的供电能力,从理论上验证了该方案的有效性,为今后的城市轨道牵引供电系统的设计提供参考。  相似文献   

10.
城市轨道交通短路故障的分析与计算是提高牵引供电系统安全运行能力及相关保护与控制技术的基础。首先建立精确的直流牵引供电系统模型,将整流机组等效成带内阻的电压源,建立等效模型并利用整流机组的外特性计算稳态短路电流。  相似文献   

11.
介绍了一种采用三相电压型PWM整流技术的光伏电池阵列模拟器。通常PWM整流器工作于单位功率因数,因而电网电压限制了直流电压的输出范围。文章通过电网提供无功电流,实现模拟器低压区间的输出,详细分析了无功电流的取值范围,提出了最佳的无功电流选取方法。实验采用一台输出端连接三相电阻的变流器,dSPACE软件控制该变流器实现逆变,以模拟直流可调负载,通过改变负载的功率使模拟器工作在I-V曲线的不同位置,并用ControlDesk监测到了模拟器在不同光照强度下的I-V和P-V特性曲线。实验证明了该模拟器能够输出不同光照强度下的I-V曲线,且具有较宽电压输出范围。  相似文献   

12.
三相三电平PWM整流电源具有输出直流电压稳定、功率器件承受压力小、交流侧电流波形正弦度好和功率因数高等特点,其在中、高压交流调速、电力系统等领域的应用越来越广泛。文章从拓扑结构、数学模型和控制方法几方面介绍了三相三电平整流电源的国际国内新技术,重点讨论了三相二极管箝位三电平PWM整流电源的中点电位平衡策略。  相似文献   

13.
为了减少高频链矩阵式变换器输出波形的谐波成分获得更好的波形质量,提出了一种包络线调制方法。此方法与解结耦SPWM调制相结合,使得高频链矩阵式变换器的前级驱动信号的占空比规律性变化。前级电路的调制波不采用普通直流电压,而是采用没有滤波时的三相桥式整流电路的输出电压,前级逆变的驱动信号的占空比随着三相电压的包络线变化而变化。通过使用该技术,高频链矩阵式逆变器的三相输出电压波形质量优于只使用SPWM调制方法的三相输出电压。文章介绍了调制技术的工作原理和电路的工作过程,使用PSpice进行了仿真,仿真结果表明这种调制方法是可行和有效的。  相似文献   

14.
上海轨道交通1号线DC·上海轨道交通1号线DC01型列车受当时电力电子技术水平发展所限,其照明电路整流环节采用了以二极管为整流元件的桥式不控整流电路。由于该电路的固有缺点,其镇流器供电不可避免地带来功率因数低下和谐波干扰问题,导致供电不连续、电能浪费、低压控制电路受到谐波干扰。针对不控整流电路进行了分析研究,在不控整流器和电容之间接入直-直开关变换器,使原电路中增加了有源功率因数校正环节,并对控制电路进行了设计。通过此项设计提高原整流电路的功率因数,以实现高效率、高性能、具有谐波抑制能力的电子照明回路。实验结果表明功率因数可由原0.65左右提高到0.99左右,达到了预期的目的。型列车受当时电力电子技术水平发展所限,其照明电路整流环节采用了以二极管为整流元件的桥式不控整流电路.由于该电路的固有缺点,其镇流器供电不可避免地带来功率因数低下和谐波干扰问题,导致供电不连续、电能浪费、低压控制电路受到谐波干扰.针对不控整流电路进行了分析研究,在不控整流器和电容之间接入直-直开关变换器,使原电路中增加了有源功率因数校正环节,并对控制电路进行了设计.通过此项设计提高原整流电路的功率因数,以实现高效率、高性能、具有谐波抑制能力的电子照明回路.实验结果表明功率因数可由原0.65左右提高到0.99左右,达到了预期的目的.  相似文献   

15.
介绍了新型列车DC 600 V供电系统的发展,从设计角度提出了地面DC 600 V电源整流装置的技术参数,并根据工程实例建立了地面DC 600 V电源整流装置原理模型,对模型中的高压设备、整流变压器、低压整流设备、股道末端直流电源箱以及保护配置等设计方案进行了分析。  相似文献   

16.
在高速动车组牵引传动系统中,由于单相供电制式的应用,会在单相脉冲整流器的直流输出环路上叠加一个2倍于电网频率的交流脉动电压分量。该脉动电压分量会使牵引电机产生拍频现象,从而导致牵引电机电流三相不平衡、转矩脉动增大等问题。针对这一现象,提出了一种基于频域分析的无拍频控制算法。该算法是在对拍频形成原理及输出电压谐波的理论分析基础上,通过在牵引逆变器输出频率上叠加一个映射直流电压脉动分量函数进行频率补偿,以消除低频谐波分量。结合矢量控制系统,完成了算法的仿真和试验验证。仿真和试验结果表明,该无拍频算法可有效抑制牵引电机拍频现象。  相似文献   

17.
李鹏 《机车电传动》2020,(1):98-101,107
新一代复兴号动力集中动车组列车供电柜,首次采用二电平PWM整流器输出DC 600 V为客车供电。由于负载前端串联EMI滤波器,在负载投入时供电柜的滤波电感和EMI电容发生振荡,引起输出电压振荡。文章为抑制输出电压振荡,对输出端并联RC吸收电路和滤波电感并联RC两种方案分别进行讨论和验证,通过对主电路结构分析,认为滤波电感并联吸收电阻方案为最优。最后通过仿真和试验验证所提方案的可行性和有效性。  相似文献   

18.
王莹 《机车电传动》2007,(3):24-26,45
针对单相三电平变流器采用瞬态电流方法进行四象限控制,使其既能工作在整流状态,又能工作在逆变状态;并且直流电压稳定,人端电压和电流是同相位或反相位的.同时,控制三电平变流器必须要考虑直流侧电压的中点平衡问题,控制方法是根据直流侧上下2个电容差及中点电流反馈值进行分析,然后对于那些不利于中点平衡的PWM脉冲进行矫正,从而控制中点电压的平衡.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号