首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
体外预应力在某连续刚构桥加固中的应用及其效果分析   总被引:10,自引:5,他引:5  
以体外预应力在某连续刚构桥加固中的应用为例 ,介绍体外预应力筋在上部结构箱梁中的布置形式、锚固和转向的方式以及张拉方法。通过对箱梁结构的竖向位移和混凝土应力的监测 ,分析该桥体外预应力加固的效果。结果表明 ,体外预应力增加了结构的压应力储备 ,改善了箱梁混凝土的应力状态 ,对结构的补强起到了一定的效果  相似文献   

2.
针对铁路混凝土箱梁顶板是否设置横向预应力筋作法不统一的问题,从结构受力、经济性、施工工艺及结构耐久性方面分析了箱梁顶板设置横向预应力筋的效用及影响.研究结果表明:铁路预应力混凝土箱梁顶板不设置横向预应力筋,只采用普通钢筋配置方式,结构受力和裂缝宽度依然能满足规范要求;顶板如不设置横向预应力筋,施工时则不用预埋相应管道,...  相似文献   

3.
体外预应力混凝土简支梁的应力分析   总被引:6,自引:0,他引:6  
通过一组体外预应力简支梁的试验,研究了梁整体变形和体外预应力筋变形的关系,分析了因体外预应力偏心距引起的二次影响、转向块及预应力筋的数量与布置方式对体外预应力简支梁性能影响,得出了一些结论.  相似文献   

4.
为满足朔黄铁路T梁提载要求,针对桥梁的特点和构造,采用新型体外预应力体系对其进行强化加固。该体系的锚具、预应力束和转向器均与普通体外预应力不同,预应力损失不能直接按现行规范进行计算。通过24 m足尺梁张拉试验,利用IMC数据采集系统动态记录体外预应力筋在张拉过程中有效应力的整个变化过程,简捷准确地获取了新型体外预应力体系锚固损失、摩擦损失的试验数据。研究结果表明:体外预应力锚固损失为0.98%σcon,摩擦损失为1.6%σcon,摩擦因数μ为0.063。试验结果为该新型预应力体系的设计和施工提供了有效计算依据,也为今后改善体外预应力结构体系提供了参考。  相似文献   

5.
无粘结体外预应力混凝土桥梁技术的发展   总被引:4,自引:0,他引:4  
介绍无粘结体外布筋预应力混凝土桥梁技术发展概况及其特点,还列举 了20世纪90年代体外预应力混凝土技术在桥梁设计中的应用实例。  相似文献   

6.
普通钢筋混凝土梁的体外预应力加固   总被引:10,自引:2,他引:8  
体外预应力技术是加固既有钢筋混凝土结构最有效的方法之一,可提高结构的承载能力和耐久性,降低钢筋疲劳应力幅度。文中通过一座普通钢筋混凝土桥的加固设计实例,介绍了普通钢筋混凝土梁体外预应力加固的适用范围、设计原则、计算方法及应注意的问题,同时建立了加固时的预应力钢筋用量计算的简化公式。  相似文献   

7.
利用有限元软件建立体外预应力混凝土简支梁模型,分析转向块个数、预应力筋的锚固高度、有效预应力度、体外索截面积以及梁体混凝土强度等因素对体外预应力混凝土简支梁极限承载力的影响。  相似文献   

8.
符汶大桥体外预应力加固技术研究   总被引:1,自引:1,他引:0  
"5.12"地震后四川地区大量桥梁受到不同程度破坏,以符汶大桥的体外预应力筋张拉加固为例,分析了体外预应力加固理论、施工技术,同时总结出体外预应力加固技术在施工中的关键要点,为今后类似桥梁加固提供参考。  相似文献   

9.
介绍既有铁路桥预应力体外索加固技术的做法,对其施工中预应力张拉应力控制、预应力筋极限应力取值、预应力筋的防护等环节进行了讨论,提出了可行的措施和建议。  相似文献   

10.
体外预应力混凝土桥梁的发展现状及探讨   总被引:11,自引:1,他引:10  
介绍体外布筋预应力混凝土桥梁技术发展概况及其特点 ,并就体外预应力混凝土桥梁中需要解决的问题进行探讨  相似文献   

11.
研究目的:预应力混凝土连续梁采用满布支架施工时,常常因为现场浇注的混凝土量过大,而不得不分段进行施工.为抵消混凝土的收缩裂缝,一般需对梁体混凝土施加预压应力.本文以太中银铁路一连续梁为工程实例,通过对3种预应力钢束布置方式的优缺点的比较,对分段施工预应力混凝土连续梁的钢束布置形式、预张力控制进行了研究.研究结论:满布支架分段现浇施工中,当采用连接器连接受构造限制时,建议纵向预应力钢束采用齿块张拉锚固的短束与梁端张拉锚固的通长束结合的布束形式.分段施工连续梁的预张力的计算和控制应根据结构理论厚度、施工龄期、终张拉龄期、混凝土弹性模量等进行综合考虑,以预张拉产生的效应抵消收缩效应为宜.  相似文献   

12.
使用CFRP(Carbon Fiber Reinforced Polymer)筋代替高强钢筋作为预应力筋,环氧涂层钢筋作为非预应力筋,可避免因预应力筋锈蚀而引起的结构物承载力下降和耐久性降低。把握无黏结CFRP筋应力增长规律是准确计算无黏结CFRP筋预应力混凝土梁(板)刚度、裂缝开展宽度及抗弯承载力的基础。针对无黏结预应力混凝土梁板在承载过程中无黏结CFRP筋不符合变形平截面假定的特点,应用等刚度法及弯矩-曲率非线性分析法,编制可用于分别考察正常使用极限状态和承载能力极限状态无黏结CFRP筋应力增长规律的计算程序。基于大量电算分析结果,得到受拉区非预应力筋配筋指标、预应力筋配筋指标、CFRP筋弹性模量、加载形式、跨高比、预应力筋合力点至受压区边缘的距离、受压区非预应力筋及受压翼缘等参数对正常使用阶段及正截面承载能力极限状态下连续梁板中无黏结CFRP筋应力增长的影响规律;建立部分预应力混凝土连续梁板中无黏结CFRP筋在正常使用阶段和正截面承载能力极限状态下应力增量的计算公式。  相似文献   

13.
以体外配置CFRP筋预应力混凝土箱梁1 001 d的长期受力性能试验为基础,采用徐变换算截面法对收缩徐变效应引起的截面应力重分布规律进行分析。理论分析与试验结果对比表明,徐变换算截面法能较好地分析持续荷载作用部分预应力箱梁的收缩徐变效应。运用双线性法和曲率法对试验箱梁的长期挠曲变形进行预测,两种分析方法预测结果基本一致,建议取长期挠度增长系数为2.45,此时长期挠度变形理论预测值与实测结果吻合较好。对现行设计规范进行有关参数修正后,持续荷载作用下预应力混凝土箱梁的最大裂缝宽度理论值与实测结果吻合较好。研究成果将为CFRP筋在体外预应力箱梁中的推广应用提供参考。  相似文献   

14.
体外预应力梁在承受荷载时,体外预应力仅通过转向块和锚固点作用在梁体上,由于体外索和混凝土梁变形不一致,存在着应力滞后现象,导致体外索和钢筋混凝土梁之间协调工作能力的大小不等.本文结合广西科学基金项目"体外预应力加固梁的试验",通过分析转向块的设置、体外索的形状、荷载类型、有效张拉预应力、体内非预应力钢筋的配筋率、偏心距、应力增量和混凝土度第几种影响因素,发现体外索和钢筋混凝土梁两者共同工作的规律:梁的刚度是决定体外索和钢筋混凝土梁两者共同工作的主要因素.本文结论对体外预应力基础理论发展有一定的借鉴意义.  相似文献   

15.
通过4根梁试件的单调加载静力试验,对体外预应力CFRP筋高性能混凝土T型梁和有粘结预应力CFRP筋高性能混凝土T型梁的受力过程、破坏形态、抗弯承载力、延性和变形等进行较为系统的研究。研究表明:体外预应力与有粘结预应力梁试件均具有较高的抗弯承载力、较大的位移延性和变形能力;体外预应力梁中体内预应力筋的应变增量比相应的体外预应力筋大得多;随着配筋率的增加,有粘结预应力梁试件的抗弯承载力有明显的提高,但其位移延性和变形能力有所降低。此外,应用商用软件ANSYS对4根梁试件进行非线性有限元分析,程序计算值与试验结果吻合良好。  相似文献   

16.
青藏铁路具有高海拔、多年冻土 ,冻融频繁、温差大、低氧含量、交通不便、桥梁结构运营后不便维修等特点 ,32 m后张法预应力耐久混凝土简支梁施工中整体滑移式外侧模板的成功运用 ,明显地改善了梁体的外观质量、提高了工效、节约了投资 ,使梁体外观质量有了较大的提高 ,值得推广  相似文献   

17.
王辉 《铁道建筑技术》2021,(3):10-12,38
为研究桥梁拆除过程被切断的预应力束残余作用效应,建立三类不同预应力作用效应计算模型,分别为切断后预应力束剩余部分作用、切断后的预应力束传递长度范围外作用、切断后预应力束不作用,以此三类计算模型在各工况下的梁体变形情况与拆桥过程梁体实测变形进行对比,结果显示:拆桥过程考虑梁体切断后的预应力束残余预应力影响比较接近梁体实际受力状态,残余预应力值可近似按照先张法预应力筋的传递长度计算,即切断后的预应力束传递长度范围外作用。  相似文献   

18.
基于小时段内混凝土应力线性变化的假定,将积分形式的混凝土时变本构方程在持荷时段内写成矩阵形式,提出了分析静定预应力混凝土桥梁弹性变形和时变变形的全量形式矩阵方法,建立了相应的矩阵方程.  相似文献   

19.
考虑预应力损失的混凝土梁徐变计算方法   总被引:8,自引:0,他引:8  
将按龄期调整的有效模量法与有限元法相结合,建立预应力混凝土梁桥徐变计算结构分析模型。模型考虑预应力束对结构整体刚度的贡献及预应力损失和徐变变形的相互影响,较准确的实现施工过程中、长期荷载作用下的徐变计算。根据此模型编制预应力混凝土梁桥徐变计算有限元程序,对小凌河特大桥32m预应力混凝土箱梁进行计算。程序计算结果与实桥试验结果吻合较好,能较好地反映桥梁上拱及徐变应变。  相似文献   

20.
研究目的:本文就实例介绍遵循IRC规范的预应力混凝土桥梁设计,有助于了解IRC桥梁规范.研究结论:预应力钢筋及混凝土的材料力学性能与我国规范相差不大,预应力损失计算也基本相同.预应力结构的安全通过控制应力状态和极限承载能力两项来保证.IRC:18的应力状态要求较严格,不允许混凝土出现拉应力,即不允许部分预应力混凝土设计.这样做的优点是设计偏于保守,结构安全裕量较大;缺点则是限制部分预应力的使用,不利于灵活适应不同设计要求和环境条件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号