首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 488 毫秒
1.
为研究列车经过时气动效应对隧道内附属设施的影响,通过现场测试分析不同因素对隧道附属设施表面气动荷载、振动加速度和列车风速的影响,给出隧道内气动荷载分布规律.研究结果表明:附属设施受到的气动荷载与列车运行速度平方近似成正比关系;隧道长度和编组对附属设施气动荷载存在耦合影响,存在最不利隧道长度,车型和季节对附属设施气动荷载...  相似文献   

2.
随着列车运行速度的提高,隧道空气动力学问题越来越突出。2005年5月在遂渝线进行了高速列车过隧道试验,对列车和隧道内空气压力变化、隧道内列车风和隧道口微气压波等参数进行了测试。结果表明:隧道内列车风风速与列车运行速度成线性关系,并且与车头和车尾的外形、列车长度、隧道截面面积及其长度等因素有很大关系;隧道壁面压力近似与列车运行速度的平方成正比;同等速度条件下,钝头型的25T提速客车引起的隧道壁面压力变化幅值比流线型动车组的大38.6%;由于双层集装箱列车较高且集装箱间的间距较大,致使同等速度下引起的隧道壁面压力变化最大;隧道入口的压力变化明显大于隧道出口的压力变化,在隧道口附近,三维效应非常明显,且每种车型均不同。因此,将列车和隧道耦合起来设计出合理的隧道和列车截面形状,是减小隧道空气动力学效应的有效途径。  相似文献   

3.
高速铁路隧道壁面气动荷载是隧道结构破坏的主要诱因之一,了解并掌握其特征对高速铁路隧道结构设计与安全营运具有重要的理论意义与工程价值。通过论述高速铁路隧道壁面气动荷载特征与现场实车测试、动模型试验以及数值仿真模拟三种研究手段的技术现状与未来发展趋势。总结归纳得出:(1)列车驶入隧道前,壁面气动荷载峰值小、持续时间短;列车在隧道内行驶时,壁面气动荷载表现为正负峰值不等的不规则变化规律;列车车尾驶出隧道后,气动荷载表现为周期性正负峰值交替的衰减规律。(2)三维光纤贴壁线性布置技术利于实现隧道全断面、全长测点布置,且具有重复利用率高,试验费用低、工作量少等优点,可作为现场实车测试过程中数据采集系统的一个重要比选方案,电机控制能进一步提高模型列车运行速度的控制精度,可作为未来动模型试验系统动力控制的优选技术之一。  相似文献   

4.
为研究市域列车通过隧道的气动载荷变化规律,利用三维、瞬态可压缩的标准k-ε湍流模型计算了4节编组市域列车通过3种不同断面隧道时的气动效应,并分析了车体表面、隧道壁面及紧急疏散平台的压力时程变化。结果表明:(1)隧道A情况下的列车表面压力峰值为2 600 Pa,隧道壁面压力峰峰值为4 100 Pa;隧道B情况下的列车表面压力峰峰值为2 000 Pa,隧道壁面压力峰峰值为3 300 Pa;隧道C情况下的列车表面压力峰峰值为3 700 Pa,隧道壁面压力峰峰值为5 500 Pa; 3种不同断面各隧道条件下,紧急疏散平台处压力变化规律与隧道壁面压力变化规律基本一致。由此可见,隧道阻塞比越大,隧道内压力波变化越剧烈。(2)隧道A测点x(线路纵向)方向气流速度变化峰值为17 m/s,隧道B测点x方向气流速度变化峰值为32 m/s,隧道C内疏散平台测点x方向上的气流速度变化幅值最大,约为40 m/s,隧道A、B、C内疏散平台测点在y(线路横向)和z(线路竖向)方向上的速度变化不大。  相似文献   

5.
当高速列车通过隧道时,其周围所产生的气压波不可避免地对轨旁电力附属设施造成气动冲击影响.配电箱作为一种隧道内广泛分布的轨旁电力附属设施,在气动荷载作用下,其锚固安全性会受到一定影响.以配电箱为研究对象,利用Abaqus与Fluent进行联合仿真分析其结构安全性.利用流体力学计算软件Fluent,建立空气?高速列车?隧道...  相似文献   

6.
采用CRH2-061C动车组,以180~320km.h-1速度往返运行,对某特长水下隧道下行线进行气动效应试验研究。研究结果表明:隧道内瞬变压力、列车风、气动载荷和隧道洞口微气压波值均随着车速的增加而增加,车厢内舒适度随着车速的增加而减少;隧道南口的微气压波值、首波压力梯度均小于北口,这主要是由于南、北口的缓冲结构型式存在差异;隧道内附属设施受到的气动荷载、车内气压3s变化值均在相关标准的要求值之内;车速大于250km.h-1时,乘员有耳鸣和不舒适感。根据研究结果提出如下建议:CRH2-061C动车组通过该隧道的合理速度为260km.h-1;开启隧道内联络通道或布置吸能材料以衰减压力波的传播能量;研究制订复合型舒适度控制标准。  相似文献   

7.
基于风压载荷空气动力学控制方程,利用计算流体力学软件FLUENT,分析高速列车在不同线间距隧道内,以不同速度级等速交会时的车体表面风压和受到的气动力;将隧道内交会时受到的气动力以时程荷载的形式施加到车辆动力学模型中,分析其对各项车辆动力学性能的影响规律,并进行安全性和平稳性指标分析。结果表明:列车在隧道内等速交会时,头车所受的气动阻力、升力、横向力最大;高速列车表面所受的风压极值与速度的2.2~2.3次方成正比,所受的气动阻力、升力、横向力与速度的1.8~2.4次方成正比;隧道内高速交会对车辆安全性指标影响不大,仅在交会瞬间产生较大的车体横向振动,当运行速度达到400km·h^-1时各项安全性、舒适性指标均满足限值要求。  相似文献   

8.
以新建佛莞城际铁路盾构隧道与广州地铁3号线明挖段矩形隧道交叠并行工程为依托,研究地铁列车通过明挖隧道时产生的振动荷载对下部新建盾构隧道衬砌结构的动力响应,并对不同列车振动荷载下新建盾构隧道衬砌结构的动应力进行了分析.使用激振力函数法模拟地铁列车振动荷载,选取下部新建盾构隧道典型监测断面的监测点来研究在地铁列车振动荷载作用下衬砌结构的振动加速度、应力和竖向位移响应特性.结果 表明:轨道结构质量越差,列车运行速度越快,车体质量越大,列车振动荷载的幅值也相应增大;在地铁列车振动荷载作用下新建盾构隧道衬砌结构存在着明显的动力影响区;新建盾构隧道衬砌管片竖向位移曲线呈"W"形,且拱顶处的竖向位移幅值最大;随着地铁列车运行速度加快,新建盾构隧道的竖向沉降亦随之增大,地铁列车运行速度每增加30 km/h,隧道衬砌结构的竖向沉降平均增加2.66%.  相似文献   

9.
采用数值计算方法,对不同编组长度高速列车以不同速度(200,250,300和350 km/h)通过隧道和于隧道中心交会进行模拟,并对产生的列车风进行分析研究。其中,数值计算方法进过实车试验数据验证,波形吻合度较好。研究发现,列车尾流引起的列车风最大,这一现象在靠近列车一侧区域尤为明显。编组长度对隧道内列车风影响显著,长编组引起的列车风明显大于短编组,增幅可达70.49%。单列车通过隧道时产生的列车风与车速近似呈线性关系,而列车于隧道内交会产生的列车风风速与车速关系已不再是线性;且相对单车工况,交会工况列车风增幅可达1.6倍。隧道内列车风峰值在空间分布存在显著差异。  相似文献   

10.
通过FLAC3D软件对列车荷载引发的盾构隧道动力响应进行了数值模拟,分析了列车高速通过隧道时盾构管片以及地层的位移变化规律。结果表明,单列列车经过左侧隧道时,竖向位移分布呈不对称状态,两列列车交会经过时,位移等值线基本呈对称分布,地表位移峰值出现在两隧道轴线附近;地下水对振动的影响较为明显。  相似文献   

11.
采用列车气动性能动模型试验装置,对高速列车以不同速度进出车站气动性能进行研究,模型缩比为1∶20,列车采用2车编组。研究结果表明:列车头部或尾部通过瞬间,将会引起车站顶棚处空气压力发生突变,形成具有破坏性的瞬态冲击压力波;车站顶棚不同测点的压力随着车体壁面距测点的间距增大而减小,且列车进站时引起的测点压力系数幅值比出口大5%左右;当两列车在车站交会时,不仅列车通过测点会引起较大的压力波动,而且两列车交会瞬间也会产生剧烈的交会压力波,使得测点瞬变压力曲线显著不同于单车通过测点情况。  相似文献   

12.
基于三维非定常可压缩雷诺时均N-S方程与k-ε两方程湍流模型,采用滑移网格方法,对400 km/h速度等级下不同编组长度(3车编组,8车编组,16车编组)列车于各自最不利长度隧道的等速交会工况进行模拟.对比数值计算与动模型试验结果,两者同一测点压力峰峰值相差不超过3.6%,验证了数值计算的可靠性.研究结果表明:列车表面压力峰峰值由头车至尾车呈下降趋势;随着编组长度由3车增加到16车,列车表面最大压力峰峰值由12.05 kPa增加到15.18 kPa;隧道壁面最大压力峰峰值由14.73 kPa增加至19.19 kPa.  相似文献   

13.
高速磁浮列车通过隧道过程中将引起剧烈的压力波动,造成司乘人员耳感舒适性、车体及其零部件、隧道衬砌及辅助设施的气动疲劳寿命问题,有必要对磁浮列车高速通过隧道时压力波效应进行研究。采用一维可压缩非定常不等熵流动模型和广义黎曼变量特征线法对单列车通过隧道时车体压力载荷进行数值模拟研究,初步揭示隧道长度、列车速度、阻塞比对车外压力波的影响规律;得出时速500~600 km/h速度下基于最大正负值和最大压力峰峰值的最不利隧道长度;论证了列车通过隧道产生的压力波幅值与列车速度平方成正比的适用范围,总结了压力最值与速度的拟合关系式。本文研究方法和结果可为车体设计选用气动载荷提供参考依据。  相似文献   

14.
以南京大胜关长江大桥地铁搭载段为研究背景,通过风洞试验,探究不同风攻角、列车位置及附属设施状态下地铁列车气动力系数变化规律,进而揭示地铁列车气动特性对列车运行稳定性影响的规律。研究结果表明:风攻角对双线在轨列车稳定性影响更大;当桥梁无附属设施,风攻角的增大不利于迎风侧列车稳定性,双线在轨列车比单线在轨列车更稳定;当桥梁有附属设施,且列车位于边跨时,风攻角越大迎风侧列车越稳定,而背风侧列车则相反,当列车在中跨运行时,列车侧向力及侧向倾覆力矩系数大于边跨,而升力系数小于边跨,表明桥梁桁架改善了列车的抗倾覆性能;桥上增加附属设施后,列车的侧向力及侧向倾覆力矩系数降低,表明附属设施有一定的格挡作用。  相似文献   

15.
针对高速铁路声屏障的安全可靠性,从气动效应角度阐述其研究现状、研究成果及存在的挑战,并基于我国高速铁路声屏障应用场景,探讨列车脉动力的主要影响因素和声屏障结构的振动特性,结合技术标准中与气动效应相关的要求和规定,提出完善标准体系的相关建议,并对未来的重点研究方向进行展望。结果表明:列车脉动力受列车运行速度、列车车型及声屏障设置位置等因素的共同影响,列车脉动力与运行速度的平方基本服从线性关系;声屏障气动效应还与车头流线型、车体截面形状等列车气动性能参数相关,相同速度条件下不同车型的脉动力差异可达45%;在列车脉动力作用下,声屏障钢立柱以横向振动为主,呈现典型受弯构件的特征,而单元板以整体往复横向运动为主,振幅受安装状态的影响显著,声屏障动力性能评估重点为结构的低频振动;未来可结合声屏障结构振动特征和服役性能变化情况,深化声屏障气动荷载产生机理和动力分析方法的研究,探索声屏障服役性能演变机理和规律,完善声屏障结构安全性能检测评估体系,发展快速高效检测技术。  相似文献   

16.
近距离空间交叉盾构隧道列车振动响应特性研究   总被引:3,自引:3,他引:0  
针对目前国内近距离空间交叉盾构隧道工程,采用拟合的列车振动荷载公式,考虑列车的行驶效应,通过在轮轴对上施加振动力时程曲线,同时给予轮轴一定的行驶速度来研究列车振动作用下空间交叉盾构隧道的动力特性。在特定列车行驶速度和围岩条件下,交叉位置对应上下隧道截面的应力和加速度情况进行分析,并对上下交叉隧道纵向不同位置的加速度时程响应进行研究。获得上部和下部隧道交叉截面第一主应力和加速度分布形态及其相对不同交叉净距的变化趋势,揭示了列车在隧道内行驶时,特定观测点出现明显动力响应存在一个对应的影响区,对比下部隧道交叉处(纵向中截面)位置点的加速度响应值与其左右各点相应加速度在数值大小和一阶频率上的区别。研究所得结论对高速铁路空间交叉盾构隧道的设计具有一定的参考价值。  相似文献   

17.
为研究快速地铁列车在隧道内运行时的“列车-隧道”耦合空气动力特性,在杭海城际铁路开展实车试验,分别对列车以100 km/h与120 km/h的速度通过隧道时的车内外压力变化情况进行研究,计算压力峰-峰值、3 s压力变化幅值与1.7 s压力变化幅值,对比列车进隧道与出隧道过程中车内外压力变化情况,分析不同车辆编组位置与不同列车运行速度对车内外压力变化的影响,研究空调机组状态与车内压力变化幅值之间的关系。研究结果表明,快速地铁列车进出隧道过程中压力变化幅值相近;列车进入隧道并在隧道内运行时,尾车车内压力变化速率最快,车外压力峰-峰值从头车向尾车逐渐减小,而车内压力峰-峰值沿车长方向基本不变;当列车速度不同时,车内外压力对比应在无量纲时间下进行,随着列车速度的增大,车内外压力峰-峰值增大,压力变化速率加快;关闭空调机组可以显著减小车内压力变化速率,可为乘客舒适性研究提供参考。  相似文献   

18.
建立盾构隧道非线性开裂三维有限元模型,研究时速200km列车脱轨撞击荷载作用下,盾构隧道管片衬砌裂缝的分布、大小、扩展过程以及接头螺栓的最大主应力、振动速度、振动加速度等动力响应特性。研究表明:在列车撞击下,管片衬砌开裂的位置主要集中在管片衬砌受撞击的中心区域及其附近纵向接缝部位;不同部位的裂缝扩展形态有差别,撞击中心区域的裂缝为贯穿性不规则曲线裂缝,纵向接缝部位的裂缝通常呈现直线裂缝或多段折线裂缝;撞击中心区域主裂缝的张开度与距撞击中心的距离有关,除撞击中心处以外,距撞击中心越近位置的裂缝其张开度越大;螺栓的最大主应力峰值、振动速度峰值均出现在荷载震荡作用阶段,而振动加速度峰值则出现在荷载峰值阶段,同一水平位置上位于撞击区域后侧的管片接头螺栓所受到的最大主应力、振动速度和振动加速度等动力响应总是大于前侧螺栓。  相似文献   

19.
陈源 《中国铁道科学》2012,(5):14+28+39+46+53+59+67+75+90+119+126+138
9京沪高速铁路综合试验——高速铁路气动效应试验研究在路堤、路堑、桥梁等明线区段和隧道等各种线路条件下,测试高速动车组以不同速度级运行和交会的过程中车体底部设备舱内外、裙板内外及转向架附近空气压力的分布和变化情况,以及进出隧道过程中车体的振动情况和地面测点的气压变化情况,研究地面气动效应对高速动车组的影响。测试动车组以不同速度级在不同线路区段运行时地面转辙机、应答  相似文献   

20.
以某预留400 km·h-1速度条件的高速铁路为研究背景,基于代理模型和优化思想,从系统设计层面提出考虑经济性的高速铁路隧道气动效应关键参数优化方法。首先,采用流体力学软件建立隧道气动效应数值模型,并基于列车以300 km·h-1速度通过隧道的实测数据,验证数值模型的有效性;然后,以隧道净空面积和车辆动态密封指数为变量,依托既有350 km·h-1高速铁路数据,构建列车以400 km·h-1速度通过隧道时车内气压变化3 s极值的Kriging代理模型;最后,以建造成本为目标函数,构建考虑经济性的高速铁路隧道气动效应关键参数优化模型,设计布谷鸟搜索算法,求解满足舒适度标准的最优隧道净空面积和车辆动态密封指数。结果表明:代理模型预测的相对均方根误差为0.59%、相关系数为0.999 9,能够精确描述车内气压变化3 s极值与车辆动态密封指数、隧道净空面积的非线性关系;对于400 km·h-1高速铁路,建设成本最小时隧道净空面积为100 m2、车辆动态密封指数为1...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号