首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
地铁隧道桥梁结构安全是运营安全的前提,定期对地铁隧道桥梁结构进行监测,研究地铁隧道桥梁结构变形规律已成为保障地铁运营安全的重要技术手段。文章介绍天津地铁9号线运营期桥梁与隧道结构监测的内容,对监测点的布设、监测方法与技术要求、控制标准等进行了论述,对监测成果进行了分析,结果表明监测效果良好。  相似文献   

2.
结合西安地铁5号线南稍门站—文艺路站盾构区间下穿地铁2号线施工实践,对盾构下穿既有运营隧道施工过程中隧道变形控制进行试验研究。通过现场施工试验及现场监测,研究分析既有隧道变形规律,提出盾构掘进施工参数动态取值范围和既有隧道变形控制技术措施,从而保证地铁2号线正常运营。  相似文献   

3.
地铁隧道结构稳定与地铁运营安全及舒适性紧密相关,地铁运营阶段的变形监测是确保结构稳定的重要措施。为探究地铁隧道基准点布置复杂情况,如点位破坏、集中布点与基准点距离变化等因素对水平位移监测精度影响,依托南京地铁某保护区的地铁变形监测数据,试算并讨论基准点数量、位置分布等因素与设站点精度间的对应关系,得出基准点数量与仪器测角精度是影响设站点精度的重要因素,并根据定量分析结果,给出地铁水平位移监测在满足精度要求条件下更加优化的实施建议。  相似文献   

4.
结合青岛某酒店基坑开挖过程对既有地铁隧道的施工保护进行研究,探讨地铁隧道临近基坑的施工控制关键因素,提出地铁隧道自动化监测的控制要点,施工过程中加强对控制性爆破施工、针对性支护体系和地铁隧道结构变形的连续观测,确保爆破震动速率符合安全要求,支护体系与地铁结构符合安全距离,结构变形处于安全状态,进而保证地铁运营的安全可靠。  相似文献   

5.
介绍天津市中央大道海河隧道工程的健康监测。针对该隧道工程主体结构变形的特点,结合其他软土地区地铁隧道运营监测经验,对其地下暗埋段和敞开段的差异沉降及接口位置的相对位置变化开展健康监测,为隧道结构的健康安全提供保障。  相似文献   

6.
对既有地铁运营线路的隧道结构沉降进行监测是了解和掌握隧道结构变形、及时发现病害和判断其安全状况的必要方法和手段。文章结合北京地铁某2条运营线路的隧道结构沉降监测实例,讨论了在不同工艺、不同埋深、不同水文地质条件下的隧道沉降情况,探讨了隧道结构监测的必要性,以指导后续隧道结构的养护维修。  相似文献   

7.
地铁运营期间隧道结构的实时监测,是保证列车安全运行的重要技术手段。将静力水准仪和位移计结合起来,建立一个全方位的位移(变形)实时监测系统,很好地解决了地铁隧道运营安全监控问题。由于列车振动及空气动力的影响,会使传感器发生震荡,导致监测信号当中含背景噪声,利用小波分析技术很好地消除了背景噪声,保证了监测数据的准确。  相似文献   

8.
盾构隧道近距离下穿既有运营隧道的施工技术   总被引:2,自引:1,他引:1  
广州APM线盾构机近距离穿越正在运营中的地铁一号线隧道,列车正常运营期间对线路变形有严格要求,因此,隧道下穿施工时采取一系列的沉降控制措施,包括穿越前盾构机的准备、关键施工参数控制、同步注浆、补充注浆、施工监测和信息化管理。另外,为保证列车运行安全,必须对运营线路进行监测及防护。施工过程中的监测结果表明,这些措施是行之有效的。  相似文献   

9.
地铁隧道在下穿既有铁路施工时,保证铁路运营安全是施工中的关键问题之一。通过建立FLAC三维数值模型,对南京地铁S8线某段盾构隧道下穿既有宁启铁路进行了计算分析,并根据计算结果建议对铁路路基采取地基注浆加固措施。对加固后的地基重新进行计算,同时制定了地基变形监测方案。监测结果表明,地铁隧道盾构施工时,影响地面沉降的因素由地基和施工参数共同作用组成。在地铁隧道下穿铁路施工时,对铁路地基进行的注浆预加固保护措施和盾构掘进过程中对施工参数进行的动态调整,保证了地铁隧道施工期间该铁路的运营安全。  相似文献   

10.
紧邻地铁区间隧道深基坑工程的设计和实践   总被引:2,自引:0,他引:2  
研究目的:随着城市轨道交通的快速发展,中心城区的深基坑工程经常紧邻正在运营的地铁区间隧道,深基坑开挖需确保邻近地铁区间隧道严格的变形保护要求,基坑工程设计由强度控制转变为变形控制。结合上海典型软土地层中紧邻地铁区间隧道深基坑工程的设计和成功实践,总结相关设计方法和措施,给类似深基坑工程设计提供参考。研究结论:针对基坑开挖对邻近地铁盾构区间隧道附加变形<20 mm的严格保护要求,在紧邻上海地铁2号线区间隧道的南京西路1 788地块基坑工程中,采用中间设置临时隔断地下连续墙将基坑一分为二、"分区顺作"的设计方法,并采取了数值模拟分析和专项保护措施,在工程实施过程中对基坑工程和区间隧道进行了详尽的基坑监测。监测结果表明,基坑本身安全、对邻近地铁区间隧道的影响都在安全可控的范围内。  相似文献   

11.
随着测量技术的快速发展,三维激光扫描技术在地铁隧道收敛变形监测中的应用日益广泛。以深圳市轨道交通2号线地铁隧道自动化监测项目为例,研究三维激光扫描仪在隧道变形监测中的应用。通过LeicaScanStationP40型三维激光扫描仪对隧道自动化监测区域进行点云数据采集,并采用Cyclone9.0软件进行数据处理和分析,所得变形监测结果与传统自动化变形监测结果基本一致。将2种方法结合,可更全面掌握隧道区域的变形情况。  相似文献   

12.
结合某地铁区间隧道,研究了运营期地铁盾构隧道管片收敛整治过程中的管片变形特征及其影响。阐述了该区间隧道变形的测量方法与结果。对运营地铁盾构隧道管片收敛整治微扰动施工过程中产生的隧道变形进行了实测,并选取下行线测试数据进行分析。结果表明:自注浆开始至注浆结束,由下行线监测区间微扰动注浆施工引起的隧道管片形状由压扁状逐渐向撑圆状变化;受水平位移和道床沉降影响的隧道管片范围为10环,受收敛位移影响的隧道管片范围为20环;受注浆施工叠加影响,隧道管片最大的水平位移、水平和竖直收敛及道床沉降均发生在注浆区间中部位置。  相似文献   

13.
为进一步提升运营地铁隧道收敛变形的综合整治效果,提出MJS联合微扰动注浆整治技术,并应用于杭州某运营地铁隧道收敛变形整治施工工程。通过分析整治施工前后隧道变形动态跟踪的监测数据与隧道断面扫描成果,探讨联合整治对于隧道变形的整治效果,总结微扰动注浆施工引起隧道收敛的变形规律。研究结果表明:MJS联合微扰动注浆施工对于地铁隧道收敛变形整治效果显著,有效解决注浆结束后隧道收敛二次回弹及注浆期间隧道产生附加变形的问题;微扰动注浆施工应重点保证前两次注浆的施工质量,并控制同一注浆孔位间隔时间。  相似文献   

14.
研究目的:杭州市备塘路高架改造工程邻近已运营的地铁1号线,桩距离地铁最近为12.43 m,桩长67.9 m。因地铁1号线已有裂缝、渗水等状况出现,桩采用全套管钻孔灌注桩施工。为研究高架桥桩施工对邻近地铁隧道变形的影响,在桥桩施工过程中对周围深层土体水平位移、孔压、隧道结构水平位移和沉降进行监测。研究结论:(1)已运营地铁隧道出现渗水、裂缝现象时,在邻近既有隧道的桩基施工时采用全套管钻孔灌注桩施工对地铁影响较小,满足地铁隧道安全保护要求;(2)全套管钻孔灌注桩施工时,孔压对埋深较浅隧道的影响波动较大,但恢复也较快,对埋深较深的隧道影响恢复较慢,相对于埋深较浅的隧道来说,其变形较大;(3)全套管钻孔灌注桩施工时,上层土体位移较大,对埋深较浅的道床沉降产生较大的影响,而深层土体位移较小,对埋深较大的隧道影响较小;(4)本研究成果对桩邻近已运营地铁隧道等类似施工工程具有参考价值。  相似文献   

15.
结合上海轨道交通2号线人民广场站-南京东路站区间隧道,研究了地铁运营隧道收敛变形及其影响.阐述了上海轨道交通2号线人民广场站-南京东路站区间隧道收敛变形的测量方法与结果.结合改进的盾构管片接头模型对地铁运营隧道进行数值模拟计算,给出不同水平径向收敛时的管片内力数值.通过实测地铁运营隧道水平径向收敛变形,结合数值模拟和最大裂缝宽度理论计算结果表明:该区间上行隧道水平径向收敛普遍较大,最大可达77 mm.衬砌管片的弯矩和裂缝宽度与水平径向收敛变形密切相关.通过理论计算,不同水平径向收敛变形时的裂缝宽度为腰部最大,拱底次之,拱顶最小.  相似文献   

16.
单拱暗挖车站上穿既有地铁线施工技术   总被引:1,自引:0,他引:1  
当在既有地铁隧道上方进行新建地铁施工时,对既有隧道的顶部卸载会引起既有地铁结构的隆起变形,运营地铁对隧道结构的变形要求极其严格,施工中采用合理的施工方法对变形的控制至关重要.浅埋大跨单拱两柱暗挖结构上穿既有地铁、铁路线等地下工程施工中,采用"中柱法"施工,能严格控制地表沉降和围岩变形,保证既有线的正常运营和既有线结构使用年限不受影响,具有一定的工程推广和应用价值.  相似文献   

17.
为确保土压平衡盾构机下穿施工既有地铁运营隧道的安全,利用三维数值有限元软件精细化建模,考虑注浆压力和掌子面压力变化的影响,多工况模拟土压平衡隧道施工获得运营隧道变形规律。通过分析土压平衡盾构机下穿施工过程中的位移响应,判定上部交叉运营地铁隧道所受影响并给出合理的注浆压力和掌子面压力参数。工程实际中利用莱卡TS30监测机器人建立了自动监测系统,对运营隧道的位移进行了监测。根据计算与监测结果得到:(1)掌子面压力越大,既有隧道沉降越小,运营隧道左线仰拱沉降最大,仰拱最大沉降范围为3.4~3.7 mm;新建隧道左线线路中线所对应的地表最大沉降范围在1.9~2.1 mm之间。(2)注浆压力越大,既有隧道沉降越小,左线拱顶最大沉降范围在2. 6~3. 6 mm;新建隧道左线线路中线所对应的地表最大沉降范围在1~2. 1 mm。(3)盾构隧道在下穿运营地铁1号线过程中,邻近运营隧道拱顶最大沉降范围在2~3.5 mm,远小于10 mm,可确保运营隧道安全。(4)采用选取的注浆压力0. 3~0. 36 MPa与土仓压力0. 1~0. 13 MPa下施工,盾构隧道穿过运营隧道后,运营隧道中股道沉降最大值为0.5 mm,轨道沉降值小于10 mm,符合要求,运营隧道安全。最后,提出了相应施工对策:在盾构下穿既有隧道施工时,应减少超挖、适当选取盾构施工参数、盾构快速通过近接区和实时监测反馈施工。  相似文献   

18.
为研究砂土地层中盾构隧道超近距离下穿既有隧道变形控制措施,以西安地铁盾构区间隧道下穿地铁1号线出入段工程为依托,通过资料调研、数值模拟、现场试验和监控测量等方法,对既有隧道加固措施、盾构对地层适应性、掘进参数、隧道变形进行研究。结果表明:砂土地层盾构隧道超近距离下穿既有隧道,应对盾构进行专门设计,扩大刀盘开口率,配备专门的膨润土拌制和膨化系统,并避免在下穿影响范围内停机;数值计算和试掘进试验结果,盾构施工参数土仓压力为0.1 MPa,注浆压力为0.22 MPa,推力为10 000 kN,出土量为51 m^3/环,注浆量5~6 m^3/环;通过现场监测,盾构下穿过程中,既有地铁隧道轨道最大沉降及高差分别为6 mm和0.8 mm,符合规范要求,确保了地铁的安全运营,变形控制措施对既有地铁隧道作用十分显著。  相似文献   

19.
随着我国对城市地下空间开发的投资增加,近年来,武汉轨道交通建设也飞速发展,城区轨道交通网络逐步形成,地铁保护区也越来越多,这些区域内多存在在建或规划的大型建设项目,其建设过程可能造成地铁结构变形,增加地铁运营的风险,因此,对地铁保护区内结构进行安全监测受到管理部门和施工部门的重视。依托武汉市长江多级阶地典型的地铁保护区隧道结构变形安全监测项目,详细论述地铁保护区变形安全监测的方案设计、实施及控制指标等因素,并通过对比现场监测和计算机模拟结果,研究各因素在不同地质条件下的影响程度和范围。针对武汉地区的地质特征提出地铁保护区应考虑的主要安全风险因素,为降低武汉地区地铁保护区内的工程风险,保障工程安全建设提供案例参考。  相似文献   

20.
基坑突发事故的应急处理对邻近地铁隧道的影响   总被引:1,自引:1,他引:0  
临近地铁运营线路的工程施工比较复杂,如何保证施工顺利,确保既有地铁隧道的稳定和安全,是项目建设中首要考虑的问题。介绍了运营线路旁某工地基坑进水突发事故过程及应急处理措施,并对邻近的既有地铁隧道在突发事故前后的变形特征进行分析,探讨工程实施对邻近地铁隧道影响的控制措施,以保证既有地铁的正常运营,并为类似工程施工与地铁监护提供借鉴和参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号