首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 32 毫秒
1.
高速磁浮列车通过隧道过程中将引起剧烈的压力波动,造成司乘人员耳感舒适性、车体及其零部件、隧道衬砌及辅助设施的气动疲劳寿命问题,有必要对磁浮列车高速通过隧道时压力波效应进行研究。采用一维可压缩非定常不等熵流动模型和广义黎曼变量特征线法对单列车通过隧道时车体压力载荷进行数值模拟研究,初步揭示隧道长度、列车速度、阻塞比对车外压力波的影响规律;得出时速500~600 km/h速度下基于最大正负值和最大压力峰峰值的最不利隧道长度;论证了列车通过隧道产生的压力波幅值与列车速度平方成正比的适用范围,总结了压力最值与速度的拟合关系式。本文研究方法和结果可为车体设计选用气动载荷提供参考依据。  相似文献   

2.
针对高速地铁列车通过隧道区间风井扩大段时引起的乘客耳感不适,依托某带隧道风井的地铁线路区间及设计时速120 km的8车编组地铁列车,以ATO运行模式开展实车试验;在确保试验可重复性的基础上,探究列车站间运行时各车厢内外压力变化规律,分析区间风井扩大段引起车内外压力突变的原因。结果表明:车头和车尾先后高速通过风井段时,相当于经历了隧道断面面积先扩大再缩小的变化过程,会形成类似于车头和车尾驶出和进入隧道洞口的物理现象,车头、车尾通过区间风井扩大段会导致车外压力的上升、下降,此时产生的压力突变是导致耳感不适的主要原因;尾车至头车的车外压力正峰值和负峰值全程呈上升趋势,头车和尾车压力变化峰峰值接近,分别为1 617和1 723 Pa,5车压力变化峰峰值最小,为964 Pa;列车通过区间风井扩大段时,车内压力变化幅值受运行速度的影响较大,速度为113 km·h-1时,任意3和1 s内的车内压力变化幅值均超过相应标准中的耳感舒适性要求。  相似文献   

3.
列车驶入隧道时会产生剧烈的压力波动,对车内人员的耳感舒适性有重要影响。在高海拔、大坡度环境下,车内外压力变化还要叠加海拔变化的影响,车内人员的耳感不适性问题将更加复杂。文章采用一维可压缩非定常不等熵流动模型黎曼变量特征线法和考虑连续换气风机工作的车内压力计算方法,分别在隧道单列车通过和中央等速交会情景下进行了车内外压力变化特征研究,并基于国内高速列车主动压力保护技术,对比了采用高静压风机和低静压风机的车内压力保护效果,最后结合UIC标准和国内民航舒适性标准限值进行了车内压力舒适性评价。研究表明,高静压风机对车内压力瞬变的抑制作用明显优于低静压风机,低静压风机车内每1 s、3 s和10 s内最大压力变化量分别高于高静压风机约100%~600%,且350 km/h速度等级列车的高静压风机对车内压力抑制作用略优于250 km/h速度等级列车。  相似文献   

4.
高速动车组新型压力控制装置   总被引:1,自引:1,他引:0  
与常规的主动式和被动式压力保护装置不同,新型高速动车组用压力控制装置采用主动式和被动式相结合的双电机驱动装置实现车内压力控制,通过隧道和隧道交会试验,验证了新型压力控制装置抑制车外压力波动的能力,形成了高速动车组车内压力控制新型技术平台.  相似文献   

5.
孙玉昆  陈垒 《铁道车辆》2023,(4):33-37+72
针对“复兴号”动车组在经过部分隧道多、海拔落差大的路线时出现乘客耳鸣及车体变形等问题,对西成线在线运营的“复兴号”动车组进行了实车跟踪测试,测试结果与理论分析结果一致,即当高速列车连续穿越海拔变化的隧道群时,为了保证车内压力处于相对稳定状态,压力保护阀长时间处于关闭状态。当列车驶出隧道后,因海拔高度和连续隧道的综合影响,车厢内外压差较大,若此时压力保护阀强制开启,列车内外压力在短时间内会迅速达到平衡,从而导致车内压力变化剧烈。文章采用数据分析的方法对被动式压力保护系统的开闭阀、强制开阀逻辑进行了优化,并通过增加泄压模式来降低车内外压差。经测试,优化后的车内1 s、3 s、10 s和60 s的最大压力变化率分别降低了68%、80%、83%和59%,远低于车内压力控制标准,人体感受较好,提高了乘客的乘坐舒适性和列车的运行安全性。  相似文献   

6.
为保证高速动车组车厢的气密性和舒适性,直排的管路中须设置压力保护装置。分析了目前高速动车组使用的几种压力保护装置的结构和原理,并分析了它们的优缺点,提出了压力保护装置选型原则。  相似文献   

7.
目的了解我国动车组运行过程中司机室和车厢环境中电磁场强以及空气质量品质状况。方法现场测试高速动车组司机室和车厢环境卫生学状况,并与既有线空调客车进行比较分析。结果高速动车组与既有线动车组司机室和车厢空气内物理与化学卫生学指标符合国家职业卫生标准。结论高速动车组司机室和车厢环境各项理化指标符合国家相关标准要求,与既有旅客空调客车比较,动车组运行时车厢及司机室内环境空气质量品质优于普通旅客列车。  相似文献   

8.
采用国内研制的高速列车通过隧道时压力波计算程序,模拟了特定隧道条件下CRH3动车组单车隧道压力波的基本特性,给出了隧道内、车头车尾处的压力波分布情况,以及对应车内处3 s内最大压差值等随车速变化的规律。同时,比较了动车组在德国和我国隧道条件下压力波的异同点。  相似文献   

9.
高速列车通过隧道时会带来乘客舒适性问题。现利用流入、流出相邻两节密封车厢的流量关系,发展了高速空调客车车厢在彼此隔离条件下车外压力引起的车内压力计算方法,模拟了客车在加装风量调节式控制系统时隧道单车压力波与会车压力波条件下的车内压力波动规律,验证了该类系统减缓车内压力的有效性。  相似文献   

10.
采用CRH2-061C动车组,以180~320km.h-1速度往返运行,对某特长水下隧道下行线进行气动效应试验研究。研究结果表明:隧道内瞬变压力、列车风、气动载荷和隧道洞口微气压波值均随着车速的增加而增加,车厢内舒适度随着车速的增加而减少;隧道南口的微气压波值、首波压力梯度均小于北口,这主要是由于南、北口的缓冲结构型式存在差异;隧道内附属设施受到的气动荷载、车内气压3s变化值均在相关标准的要求值之内;车速大于250km.h-1时,乘员有耳鸣和不舒适感。根据研究结果提出如下建议:CRH2-061C动车组通过该隧道的合理速度为260km.h-1;开启隧道内联络通道或布置吸能材料以衰减压力波的传播能量;研究制订复合型舒适度控制标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号