首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This paper is about yard management in container ports. As a tactical level decision-making tool in a port, a yard template determines the assignment of spaces (subblocks) in a yard for arriving vessels, which visit the port periodically. The objective of yard template planning is to minimize the transportation cost of moving containers around the yard. To handle yard template planning, a mixed integer programming model is proposed that also takes into account traffic congestion in the yard. A further complication is that the cycle time of the vessels' periodicities is not uniform and varies among them, perhaps being one week, ten days, or two weeks, etc. However, this multiple cycle time of the periodicities of vessel arrival patterns, which complicates the yard template decision, is also considered in the model. Moreover, a local branching based solution method and a Particle Swarm Optimization based solution method are developed for solving the model. Numerical experiments are also conducted to validate the effectiveness of the proposed model, which can save around 24% of the transportation costs of yard trucks when compared with the commonly used First-Come-First-Served decision rule. Moreover, the proposed solution methods can not only solve the proposed model within a reasonable time, but also obtain near-optimal results with about 0.1–2% relative gap.  相似文献   

2.
Trucks travel both short distances for local deliveries and long distances for transporting goods across the country. Often their travel behavior is tour-based, they run under tight schedules and under curfew on selected roads. Despite these differences from personal travel, in practice truck models largely follow person travel methods. To overcome this shortcoming, a two-layer truck model is developed for the Chicago Metropolitan Area. Long-distance trucks are driven by commodity flows, with distribution centers, rail yards, marine ports and airports being represented explicitly. Empty trucks are accounted for as well. For the short-distance truck model, a novel parameter estimation method makes use of limited data to derive region-specific parameters. The model is fully operational and validates reasonably well against traffic counts.  相似文献   

3.
The explosive growth in the freight volumes has put a lot of pressure on seaport authorities to find better ways of doing daily operations in order to improve the performance and to cope with avalanches of containers processing at container terminals. Advanced technologies, and in particular automated guided vehicle systems (AGVS), have been recently proposed as possible candidates for improving the terminal’s efficiency not only due to their abilities of significantly improving the performance but also to the repetitive nature of operations in container terminals. The deployment of AGVS may not be as effective as expected if the container terminal suffers from a poor layout. In this paper, simulation models are developed and used to demonstrate the impact of automation and terminal layout on terminal performance. In particular, two terminals with different but commonly used yard configurations are considered for automation using AGVS. A multi attribute decision making (MADM) method is used to assess the performance of the two terminals and determine the optimal number of deployed automated guided vehicles (AGVs) in each terminal. The simulation results demonstrate that substantial performance can be gained using AGVS. Furthermore, the yard layout has an effect on the number of AGVs used and on performance.  相似文献   

4.
The objective of this paper is to introduce a computer simulation model with on-screen animation graphics, which can simulate the operations of a container terminal equipped with straddle carriers. The movements of the equipment are simulated as realistically as possible, to include time losses due to the mismatch in the sequence of equipment movements and to traffic congestion. Trucks are normally served in a specified area, but in some cases, straddle carrier drivers can call the truck to be served directly in the container storage areas. The experience of operators is incorporated in the model, in the form of a knowledge base, that is used to simulate the above process and determine the service discipline. The model was designed to evaluate different configurations (changes in yard layout, equipment number and productivity, truck arrival pattern and service discipline) of the simulated system. The proposed model was used to examine the differences between “the observed” operations strategy and the strategy dictated by the operational rules of the port of Piraeus. The results indicate that “the observed” strategy leads to shorter truck service time but increase the traffic conflicts in the terminal's internal transport networks.  相似文献   

5.
Appointment systems for truck arrivals at container terminals have been applied in many ports to reduce truck congestion. This study suggests a new appointment process by which trucking companies and terminals collaboratively determine truck operation schedules and truck arrival appointments. This study formulates a mathematical model involving a sub-problem for each trucking company to determine the optimal dispatching schedules for trucks and the other sub-problem for the terminal to estimate the expected truck system time in each time interval. An iterative collaboration process is proposed based on a decomposed mathematical formulation. Numerical experiments are conducted to investigate the performance of the decision process and the robustness of the process in practical operation conditions.  相似文献   

6.
A negative effect of congestion that tends to be overlooked is travel time uncertainty. Travel time uncertainty causes scheduling costs due to early or late arrival. The negative effects of travel time uncertainty can be reduced by providing travellers with travel time information, which improves their estimate of the expected travel time, thereby reducing scheduling costs. In order to assess the negative effects of uncertainty and the benefits of travel time information, this paper proposes a conceptual model of departure time choice under travel time uncertainty and information. The model is based on expected utility theory, and includes the variation in travel time, the quality of travel time information and travellers’ perception of the travel time. The model is illustrated by an application to the case of the A2 motorway between Beesd and Utrecht in the Netherlands.  相似文献   

7.
Valuation of travel time savings is a critical measure in transport infrastructure appraisal, traffic modelling and network performance. It has been recognised for some time that the travel times associated with repeated trips are subject to variation, and hence there is risk embedded in the treatment of expected travel time. In the context of the expected utility framework, we use a nonlinear probability weighting function to accommodate choice made under risk. Although the empirical findings suggest small differences between the value of expected travel time savings (VETTS) in the presence and absence of risk, the mean estimate does make a noticeable difference to time benefits when applied to real projects. By incorporating nonlinear probability weighting, our model reveals that the probabilities associated with specific travel times that are shown to respondents in the choice experiment are transformed, resulting in overweighting of outcomes with low probabilities and underweighting of outcomes with high probabilities. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The train operational plan (TOP) plays a crucial role in the efficient and effective operation of an urban rail system. We optimize the train operational plan in a special network layout, an urban rail corridor with one terminal yard, by decomposing it into two sub-problems, i.e., the train departure profile optimization and the rolling stock circulation optimization. The first sub-problem synthetically optimizes frequency setting, timetabling and the rolling stock circulation at the terminal without a yard. The maximum headway function is generated to ensure the service of the train operational plan without considering travel demand, then we present a model to minimize the number of train trips, and design a heuristic algorithm to maximize the train headway. On the basis of a given timetable, the rolling stock circulation optimization only involves the terminal with a yard. We propose a model to minimize the number of trains and yard–station runs, and an algorithm to find the optimal assignment of train-trip pair connections is designed. The computational complexities of the two algorithms are both linear. Finally, a real case study shows that the train operational plan developed by our approach enables a better match of train headway and travel demand, and reduces the operational cost while satisfying the requirement of the level of service.  相似文献   

9.
This paper presents the results of a project conducted to study the characteristics of truck traffic in Singapore. Detailed traffic surveys recording counts of vehicles by axle-configuration were performed at 219 sites over a period of nearly two years. The surveys covered 5 different road classes, namely expressways, arterials, collectors, industrial roads and local roads. It was found that the time distribution of truck travel were not the same among the five road classes. The peaking characteristics of truck traffic were less pronounced compared to passenger car traffic. The peak hour truck volume varied from 67.0% to 9.7% of the daily truck traffic as compared to 13.8% for passenger car traffic. The lane distribution pattern of truck traffic was studied in detail by road class, and was found to be a function of total directional traffic volume, total directional truck volume and the number of traffic lanes. Composition analysis was also carried out to study the lane use characteristics of single- and multiple-unit trucks.  相似文献   

10.
This paper formulates a network design problem (NDP) for finding the optimal public transport service frequencies and link capacity expansions in a multimodal network with consideration of impacts from adverse weather conditions. The proposed NDP aims to minimize the sum of expected total travel time, operational cost of transit services, and construction cost of link capacity expansions under an acceptable level of variance of total travel time. Auto, transit, bus, and walking modes are considered in the multimodal network model for finding the equilibrium flows and travel times. In the proposed network model, demands are assumed to follow Poisson distribution, and weather‐dependent link travel time functions are adopted. A probit‐based stochastic user equilibrium, which is based on the perceived expected travel disutility, is used to determine the multimodal route of the travelers. This model also considers the strategic behavior of the public transport travelers in choosing their routes, that is, common‐line network. Based on the stochastic multimodal model, the mean and variance of total travel time are analytical estimated for setting up the NDP. A sensitivity‐based solution algorithm is proposed for solving the NDP, and two numerical examples are adopted to demonstrate the characteristics of the proposed model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The current AASHTO policy for sight distance at stop-controlled intersections is based on a model of the acceleration performance of a minor-road vehicle turning left or right onto a major road and the deceleration performance of the following major-road vehicle. This paper develops and quantifies an alternative intersection sight distance model based on gap acceptance. The paper describes field studies that were performed to determine the critical gaps appropriate for use in sight distance design. It is recommended that the sight distance along the major road for a passenger car at a stop-controlled intersection be based on a distance equal to 7.5 s of travel time at the design speed of the major road. Longer sight distances are recommended for minor-road approaches that have sufficient truck volumes to warrant consideration of a truck as the design vehicle. ©  相似文献   

12.
The effect of travel time variability (TTV) on route choice behavior is explored in this study. A stated preference survey is conducted to collect behavioral data on Shanghai drivers’ choice between a slow but stable route and a fast but unreliable route. Travel time and TTV are respectively measured by mean and standard deviation of random travel time. The generalized linear mixed model (GLMM) is applied to quantify trade-offs between travel time and TTV. The GLMM based route choice model effectively accounts for correlations among repeated observations from the same respondent, and captures heterogeneity in drivers’ values of TTV. Model estimation results show that, female drivers and drivers with rich driving experience are less likely to choose a route with high TTV; smaller expected travel time of a route increase the probability of its being chosen; all drivers have intrinsic preference for a route with smaller expected travel time, but the degree of preference may vary within the population; TTV on average has negative effects on route choice decision, but a small portion of drivers are risk-prone to choose a fast but unreliable route despite high TTV.  相似文献   

13.
This paper describes procedures to develop truck trip generation (TTG) rates for small- and medium-sized urban areas and its implications. Ordinary least squares models are used to develop separate truck production and attraction equations with the number of employees as the independent variable for three industrial groups – retail, transportation and warehousing, and manufacturing. Results from this research indicate that number of employees is a statistically significant predictor, and has significant explanatory power in predicting the number of truck trips produced and attracted. The rates developed in this study are also found to be significantly different from rates developed in other studies with the implication that caution needs to be taken when transferring TTG rates. The rates are applied in a travel demand model as the initial step of incorporating truck traffic into the modeling process.  相似文献   

14.
Current benefits from travel time savings have only been related to the benefits from reducing mean travel time. Some previous attempts of including variability in the generalised cost function have mainly assumed commuters with fixed arrival time. This paper presents a comprehensive framework for valuing travel time variability that allows for any journey purpose and arrival time constraint. The proposed model is based on the expected utility approach and the mean-standard deviation approach. Stated Preference methods are considered the best technique for providing the data for calibrating the models. The values of time derived from the models are highly influenced by the value of travel time variability and it strongly depends on the probability distribution function travellers are faced with.  相似文献   

15.
Land border crossings in North America, such as those between Canada and U.S.A., are expected to experience severe imbalance of travel demand and capacity of processors. During peak travel periods, this is already the case at high traffic locations. The land border crossing authorities have to address problems of congestion, national security and environmental impacts in the operation of the existing systems and to continue to address these problems as a part of infrastructure expansion plans. There is a need to adapt the crossing system management in order to accommodate efficiency and productivity‐oriented priority crossing measures. From a methodological perspective, it is a challenge to evaluate the role of priority crossing measures within the complex border crossing system. This paper reports research on modelling priority crossing initiatives. A microsimulation approach was used to model and analyse integrated processors of the Peace Bridge crossing system between Fort Erie (Ontario) and Buffalo (New York) under different scenarios of travel demand, customs processing times, priority crossing and queue jump lanes for automobile and truck traffic. Findings show the extent to which a border crossing system with priority crossing and queue jump lanes is more efficient and productive than one without these innovations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
17.
This study investigates a new delivery problem that has emerged after the attempts of several e-commerce and logistics firms to deploy drones in their operations to increase efficiency and reduce delivery times. In this problem, a delivery truck that carries a drone on its roof serves customers in coordination with a drone. The drone is considered to complement the truck due to its cost-efficiency and ability to access difficult terrains and to travel without exposure to congestion. This study presents an iterative algorithm that is based on a decomposition approach to minimize delivery completion time. In the first stage of the proposed methodology, the truck route and the customers assigned to the drone are determined. In the second stage, a mixed-integer linear programming model is solved to optimize the drone route by fixing the routing and the assignment decisions that are made in the first stage. Beginning with the shortest truck route, the assignment and the routing decisions are iteratively improved. The solution times of our algorithm are compared with the solution times of the state-of-the-art formulations that are solved by CPLEX. The results demonstrate that our algorithm yields shorter solution times for the instances that we generated with the specified parameters. An optimization-based heuristic algorithm, which obtains solutions for medium-sized instances, is developed by reducing the feasible search area.  相似文献   

18.
Travellers can benefit from the availability of point‐to‐point driving time estimates on a real time basis for making travel decisions such as route choice at strategic locations (e.g. junctions of major routes). This paper reports a predictive travel time methodology that features a Bayesian approach to fusing and updating information for use in advanced traveller information system. The methodology addresses the issue that data captured in real time on travel conditions becomes obsolete and has archival value only unless it is used as an input to a predictive travel time method for updating the information. The need for fusing real time data with other factors that influence travel time is defined and the concept of predictive travel time is discussed. The methodological framework and its components are advanced and an example application is provided for illustrating the fusion of data captured by infrastructure‐based and mobile technology with model‐based predictions in order to produce expected travel times. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we study the joint optimization of the tactical berth allocation and the tactical yard allocation in container terminals, which typically consist of berth side and yard side operations. The studied two objectives are: (i) the minimization of the violation of the vessels’ expected turnaround time windows with the purpose of meeting the timetables published by shipping liners, and (ii) the minimization of the total yard transportation distance with the aim to lower terminal operational cost. We propose a bi-objective integer program which can comprehensively address the import, export and transshipment tasks in port daily practice. Traditionally, a container transshipment task is performed as a couple of import and export tasks, called indirect-transshipment mode, in which the transit container are needed to be temporally stored in the yard. As the way of transferring containers directly from the incoming vessel to the outgoing vessel, called direct-transshipment mode, has potential to save yard storage resources, the proposed model also incorporates both indirect- and direct-transshipment modes. To produce Pareto solutions efficiently, we devise heuristic approaches. Numerical experiments have been conducted to demonstrate the efficiency of the approaches.  相似文献   

20.
Because individuals may misperceive travel time distributions, using the implied reduced form of the scheduling model might fall short of capturing all costs of travel time variability. We reformulate a general scheduling model employing rank-dependent utility theory and derive two special cases as econometric specifications to study these uncaptured costs. It is found that reduced-form expected cost functions still have a mean–variance form when misperception is considered, but the value of travel time variability is higher. We estimate these two models with stated-preference data and calculate the empirical cost of misperception. We find that: (i) travelers are mostly pessimistic and thus tend to choose departure times too early to achieve a minimum cost, (ii) scheduling preferences elicited using a stated-choice method can be relatively biased if probability weighting is not considered, and (iii) the extra cost of misperceiving the travel time distribution might be nontrivial when time is valued differently over the time of day and is substantial for some people.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号