首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recent increase in demand for performance‐driven and outcome‐based transportation planning makes accurate and reliable performance measures essential. Vehicle miles traveled (VMT), the total miles traveled by all vehicles on roadways, has been utilized widely as a proxy for traffic impact assessment, vehicle emissions, gasoline consumption, and crashes. Accordingly, a number of studies estimate VMT using diverse data sources. This study estimates VMT in the urban area of Bucheon, South Korea, by predicting the annual average daily traffic for unmeasured locations using spatial interpolation techniques (i.e., regression kriging and linear regression). The predictive performance of this method is compared with that of the existing Highway Performance Monitoring System (HPMS) method. The results show that regression kriging could provide more accurate VMT estimates than the HPMS method and linear regression, especially with a small sample size. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Short period traffic counts (SPTCs) are conducted routinely to estimate the annual average daily traffic (AADT) at a particular site. This paper uses Indian traffic volume data to methodically and extensively study the effect of four aspects related to the design of SPTCs. These four aspects are: (i) for how long, (ii) on which days should SPTCs be carried out, (iii) how many times, and (iv) on which months should SPTCs be carried out? The analyses indicate that the best durations for conducting SPTCs are 3 days (starting with a Thursday) and 7 days, for total traffic and truck traffic, respectively. Further, these counts should be repeated twice a year keeping a separation of two months between the counts to obtain good estimates of AADT at minimal cost. An additional outcome of this study has been the determination of seasonal factor values for roads in developing economies, like India.  相似文献   

3.
The average annual daily traffic (AADT) volumes can be estimated by using a short period count of less than twenty‐four hour duration. In this paper, the neural network method is adopted for the estimation of AADT from short period counts and for the determination of the most appropriate length of counts. A case study is carried out by analysing data at thirteen locations on trunk roads and primary roads in urban area of Hong Kong. The estimation accuracy is also compared with the one obtained by regression analysis approach. The results show that the neural network approach consistently performed better than the regression analysis approach.  相似文献   

4.
This study describes an adaptable planning tool that examines potential change in vehicle miles travelled (VMT) growth and corresponding traffic safety outcomes in two urbanized areas, Baton Rouge and New Orleans, based on built environment, economic and demographic variables. This model is employed to demonstrate one aspect of the potential benefits of growth management policy implementation aimed at curbing VMT growth, and to establish targets with which to measure the effectiveness of those policies through a forecasting approach. The primary objective of this research is to demonstrate the need to break with current trends in order to achieve future goals, and to identify specific policy targets for fuel prices, population density, and transit service within the two study regions. Models indicate based on medium growth scenarios, Baton Rouge will experience a 9 percent increase in VMTs and New Orleans will experience 10 percent growth. This translates to corresponding increases in crashes, injuries and fatalities. The paper provides forecasts for planners and engineers to consider an alternative future, based on desired goals to reduce VMTs and therefore improve safety outcomes. A constrained-forecast model shows a cap on VMTs and crash rates is achievable through policy that increases fuel prices, population density and annual transit passenger miles per capita at reasonable levels through a growth management approach.  相似文献   

5.
The precise estimation of the annual average daily traffic (AADT) is a task of significant interest for many transportation authorities and Departments of Transportation. In this study, three methods are developed to improve the assignment of short‐term counts to seasonal adjustment factor (SAF) groupings: the traditional functional classification, a discriminant analysis (DA), and a new statistical approach based on a weighted coefficient of variation (WCV). The data analyzed within this study are generated from all available continuous counters within the State of Ohio between 2002 and 2006. The analysis is conducted using SAFs that are separately calculated for the total volume and the directional specific volumes of a site. The results show that the directionally based assignment errors are statistically lower at a 95% confidence interval when compared with those generated by the total volume analysis. It is also found that the hourly time‐of‐day factors are more important in the assignment process than the average daily traffic. The directionally based WCV produces a decline in the average mean absolute percentage error (MAPE) over the roadway functional classification by 58% and in the standard deviation of the absolute error (SDAE) by 70%. On the contrary, the directionally based DA lowers the MAPE and the SDAE by 35% and 60%, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Abstract

The estimation of annual average daily traffic (AADT) is an important parameter collected and maintained by all US departments of transportation. There have been many past research studies that have focused on ways to improve the estimation of AADT. This paper builds upon previous research and compares eight methods, both traditional and cluster-based methodologies, for aggregating monthly adjustment factors for heavy-duty vehicles (US Department of Transportation Federal Highway Administration (FHWA) vehicle classes 4–13). In addition to the direct comparison between the methodologies, the results from the analysis of variance show at the 95% confidence level that the four cluster-based methods produce statistically lower variance and coefficient of variation over the more traditional approaches. In addition to these findings – which are consistent with previous total volume studies – further analysis is performed to compare total heavy-duty monthly adjustment factors, both directions of traffic, with direction-based monthly adjustment factors. The final results show that the variance as well as the coefficient of variation improve on average by 25% when directional aggregate monthly adjustment factors are used instead of total direction.  相似文献   

7.
Abstract

Estimating missing values is known as data imputation. Previous research has shown that genetic algorithms (GAs) designed locally weighted regression (LWR) and time delay neural network (TDNN) models can generate more accurate hourly volume imputations for a period of 12 successive hours than traditional methods used by highway agencies. It would be interesting and important to further refine the models for imputing larger missing intervals. Therefore, a large number of genetically designed LWR and TDNN models are developed in this study and used to impute up to a week-long missing interval (168 hours) for sample traffic counts obtained from various groups of roads in Alberta, Canada. It is found that road type and functional class have considerable influences on reliable imputations. The reliable imputation durations range from 4–5 days for traffic counts with most unstable patterns to over 10 days for those with most stable patterns. The study results clearly show that calibrated GA-designed models can provide reliable imputations for missing data with ‘block patterns’, and demonstrate their further potentials in traffic data programs.  相似文献   

8.
Highway traffic flow phenomena involve several complex and stochastic variables with high interdependencies. The variations in roadway, traffic and environmental factors influence the traffic flow quality significantly. Capacity analysis of road sections under different traffic and geometric conditions need to quantify the vehicles of widely varying characteristics to a common and universally acceptable unit. Passenger car unit (PCU) is the universally adopted unit of traffic volume, keeping the passenger car as the ‘standard vehicle’ with reference to its static and dynamic characteristics; other vehicles are expressed to its equivalent number in terms of PCUs. The studies carried out in this aspect represent the dynamic nature of impedance caused by a vehicle while moving through a traffic stream. The PCU values recommended by the Highway Capacity Manual are widely applied in many countries; however, their applicability is highly under debate because of the variations in prevailing local traffic conditions. There are several factors that influence the PCU values such as traffic, roadway, vehicle, environmental and control conditions, etc. Apart from vehicular characteristics, the other two major factors that influence the PCU of vehicles are the following: (i) road width and (ii) traffic volume. In this study, estimation of PCU values for the different types of vehicles of a highly heterogeneous traffic on 7.5‐ and 11.0‐m‐wide roads, using micro‐simulation technique, has been dealt with. It has been found that the PCU value of a vehicle type varies significantly with variation in road width and traffic volume. The results of the study indicate that the PCU values are significantly influenced by the said two factors. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Few studies have quantified relationships between bicyclist exposure to air pollution and roadway and traffic variables. As a result, transportation professionals are unable to easily estimate exposure differences among bicycle routes for network planning, design, and analysis. This paper estimates the effects of roadway and travel characteristics on bicyclist exposure concentrations, controlling for meteorology and background conditions. Concentrations of volatile organic compounds (VOC) and carbon monoxide (CO) are modeled using high-resolution data collected on-road. Results indicate that average daily traffic (ADT) provides a parsimonious way to characterize the impact of roadway characteristics on bicyclists’ exposure. VOC and CO exposure increase by approximately 2% per 1000 ADT, robust to different regression model specifications. Exposure on off-street facilities is higher than at a park, but lower than on-street riding – with the exception of a path through an industrial corridor with significantly higher exposure. VOC exposure is 20% higher near intersections. Traffic, roadway, and travel variables have more explanatory power in the VOC models than the CO model. The quantifications in this paper enable calculation of expected exposure differences among travel paths for planning and routing applications. The findings also have policy and design implications to reduce bicyclists’ exposure. Separation between bicyclists and motor vehicle traffic is a necessary but not sufficient condition to reduce exposure concentrations; off-street paths are not always low-exposure facilities.  相似文献   

10.
Persistent lack of non-motorized traffic counts can affect the evidence-based decisions of transportation planning and safety-concerned agencies in making reliable investments in bikeway and other non-motorized facilities. Researchers have used various approaches to estimate bicycles counts, such as scaling, direct-demand modeling, time series, and others. In recent years, an increasing number of studies have tried to use crowdsourced data for estimating the bicycle counts. Crowdsourced data only represents a small percentage of cyclists. This percentage, on the other hand, can change based on the location, facility type, meteorological, and other factors. Moreover, the autocorrelation observed in bicycle counts may be different from the autocorrelation structure observed among crowdsourced platform users, such as Strava. Strava users are more consistent; hence, the time series count data may be stationary, while bicycle demand may vary based on seasonal factors. In addition to seasonal variation, several time-invariant contributing factors (e.g., facility type, roadway characteristics, household income) affect bicycle demand, which needs to be accounted for when developing direct demand models. In this paper, we use a mixed-effects model with autocorrelated errors to predict daily bicycle counts from crowdsourced data across the state of Texas. Additionally, we supplement crowdsourced data with other spatial and temporal factors such as roadway facility, household income, population demographics, population density and weather conditions to predict bicycle counts. The results show that using a robust methodology, we can predict bicycle demand with a 29% margin of error, which is significantly lower than merely scaling the crowdsourced data (41%).  相似文献   

11.
In 1992, the Federal Highway Administration awarded small research contracts to four teams of transportation researchers to design alternative approaches for improving the urban travel demand forecasting process. The purpose of these contracts was to enable each research team to explain how transportation planning models could and should be improved to meet the new forecasting requirements brought on by recent legislation, to address the impacts of new transportation technology, and to exploit the travel behavior theories and methodologies that have developed over the past two decades.This paper presents a summary and synthesis of the ideas which emerged from the four research reports. Its purpose is to identify common themes suggested by several of the research teams, to point out what appear to be critical elements missing from some approaches, and to combine the best aspects of the four approaches into a research plan for improving the current generation of travel demand models.Abbreviations CAAA Clean Air Act Amendments - FHWA Federal Highway Administration - GIS Geographic Information System - IIA Independence of Irrelevant Alternatives - IT Information Technology - IVHS Intelligent Vehicle Highway System - SUE Stochastic User Equilibrium - TCM Transportation Control Measures - UTPS Urban Transportation Planning System - VMT Vehicle Miles of Travel The paper was prepared as a report for the Federal Highway Administration.  相似文献   

12.
The theory of induced travel demand asserts that increases in highway capacity will induce additional growth in traffic. This can occur through a variety of behavioral mechanisms including mode shifts, route shifts, redistribution of trips, generation of new trips, and long run land use changes that create new trips and longer trips. The objective of this paper is to statistically test whether this effect exists and to empirically derive elasticity relationships between lane miles of road capacity and vehicle miles of travel (VMT). An analysis of US data on lane mileage and VMT by state is conducted. The data are disaggregated by road type (interstates, arterials, and collectors) as well as by urban and rural classifications. Various econometric specifications are tested using a fixed effect cross-sectional time series model and a set of equations by road type (using Zellner’s seemingly unrelated regression). Lane miles are found to generally have a statistically significant relationship with VMT of about 0.3–0.6 in the short run and between 0.7 and 1.0 in the long run. Elasticities are larger for models with more specific road types. A distributed lag model suggests a reasonable long-term lag structure. About 25% of VMT growth is estimated to be due to lane mile additions assuming historical rates of growth in road capacity. The results strongly support the hypothesis that added lane mileage can induce significant additional travel.  相似文献   

13.
Abstract

In this paper we discuss a dynamic origin–destination (OD) estimation problem that has been used for identifying time-dependent travel demand on a road network. Even though a dynamic OD table is an indispensable data input for executing a dynamic traffic assignment, it is difficult to construct using the conventional OD construction method such as the four-step model. For this reason, a direct estimation method based on field traffic data such as link traffic counts has been used. However, the method does not account for a logical relationship between a travel demand pattern and socioeconomic attributes. In addition, the OD estimation method cannot guarantee the reliability of estimated results since the OD estimation problem has a property named the ‘underdetermined problem.’ In order to overcome such a problem, the method developed in this paper makes use of vehicle trajectory samples with link traffic counts. The new method is applied to numerical examples and shows promising capability for identifying a temporal and spatial travel demand pattern.  相似文献   

14.
The notion of capacity is essential to the planning, design, and operations of freeway systems. However, in the practice freeway capacity is commonly referred as a theoretical/design value without consideration of operational characteristics of freeways. This is evident from the Highway Capacity Manual (HCM) 2000 in that no influence from downstream traffic is considered in the definition of freeway capacity. In contrast to this definition, in this paper, we consider the impact of downstream traffic and define freeway operational capacity as the maximum hourly rate at which vehicles can be expected to traverse a point or a uniform section of a roadway under prevailing traffic flow conditions. Therefore freeway operational capacity is not a single value with theoretical notion. Rather, it changes under different traffic flow conditions. Specifically, this concept addresses the capacity loss during congested traffic conditions. We further study the stochasticity of freeway operational capacity by examining loop detector data at three specifically selected detector stations in the Twin Cities’ area. It is found that values of freeway operational capacity under different traffic flow conditions generally fit normal distributions. In recognition of the stochastic nature of freeway capacity, we propose a new chance-constrained ramp metering strategy, in which, constant capacity value is replaced by a probabilistic one that changes dynamically depending on real-time traffic conditions and acceptable probability of risk determined by traffic engineers. We then improve the Minnesota ZONE metering algorithm by applying the stochastic chance constraints and test the improved algorithm through microscopic traffic simulation. The evaluation results demonstrate varying degrees of system improvement depending on the acceptable level of risk defined.  相似文献   

15.
Analyses from some of the highway agencies show that up to 50% permanent traffic counts (PTCs) have missing values. It will be difficult to eliminate such a significant portion of data from traffic analysis. Literature review indicates that the limited research uses factor or autoregressive integrated moving average (ARIMA) models for predicting missing values. Factor-based models tend to be less accurate. ARIMA models only use the historical data. In this study, genetically designed neural network and regression models, factor models, and ARIMA models were developed. It was found that genetically designed regression models based on data from before and after the failure had the most accurate results. Average errors for refined models were lower than 1% and the 95th percentile errors were below 2% for counts with stable patterns. Even for counts with relatively unstable patterns, average errors were lower than 3% in most cases.  相似文献   

16.
This paper presents an alternative planning framework to model and forecast network traffic for planning applications in small communities, where limited resources debilitate the development and applications of the conventional four-step travel demand forecasting model. The core idea is to use the Path Flow Estimator (PFE) to estimate current and forecast future traffic demand while taking into account of various field and planning data as modeling constraints. Specifically, two versions of PFE are developed: a base year PFE for estimating the current network traffic conditions using field data and planning data, if available, and a future year PFE for predicting future network traffic conditions using forecast planning data and the estimated base year origin–destination trip table as constraints. In the absence of travel survey data, the proposed method uses similar data (traffic counts and land use data) as a four-step model for model development and calibration. Since the Institute of Transportation Engineers (ITE) trip generation rates and Highway Capacity Manual (HCM) are both utilized in the modeling process, the analysis scope and results are consistent with those of common traffic impact studies and other short-range, localized transportation improvement programs. Solution algorithms are also developed to solve the two PFE models and integrated into a GIS-based software called Visual PFE. For proof of concept, two case studies in northern California are performed to demonstrate how the tool can be used in practice. The first case study is a small community of St. Helena, where the city’s planning department has neither an existing travel demand model nor the budget for developing a full four-step model. The second case study is in the city of Eureka, where there is a four-step model developed for the Humboldt County that can be used for comparison. The results show that the proposed approach is applicable for small communities with limited resources.  相似文献   

17.
Urban traffic congestion is one of the most severe problems of everyday life in Metropolitan areas. In an effort to deal with this problem, intelligent transportation systems (ITS) technologies have concentrated in recent years on dealing with urban congestion. One of the most critical aspects of ITS success is the provision of accurate real-time information and short-term predictions of traffic parameters such as traffic volumes, travel speeds and occupancies. The present paper concentrates on developing flexible and explicitly multivariate time-series state space models using core urban area loop detector data. Using 3-min volume measurements from urban arterial streets near downtown Athens, models were developed that feed on data from upstream detectors to improve on the predictions of downstream locations. The results clearly suggest that different model specifications are appropriate for different time periods of the day. Further, it also appears that the use of multivariate state space models improves on the prediction accuracy over univariate time series ones.  相似文献   

18.
Accurate short-term traffic flow forecasting has become a crucial step in the overall goal of better road network management. Previous research [H. Kirby, M. Dougherty, S. Watson, Should we use neural networks or statistical models for short term motorway traffic forecasting, International Journal of Forecasting 13 (1997) 43–50.] has demonstrated that a straightforward application of neural networks can be used to forecast traffic flows along a motorway link. The objective of this paper is to report on the application and performance of an alternative neural computing algorithm which involves ‘sequential or dynamic learning’ of the traffic flow process. Our initial work [H. Chen, S. Clark, M.S. Dougherty, S.M. Grant-Muller, Investigation of network performance prediction, Report on Dynamic Neural Network and Performance Indicator development, Institute for Transport Studies, University of Leeds Technical Note 418, 1998 (unpublished)] was based on simulated data (generated using a Hermite polynomial with random noise) that had a profile similar to that of traffic flows in real data. This indicated the potential suitability of dynamic neural networks with traffic flow data. Using the Kalman filter type network an initial application with M25 motorway flow data suggested that a percentage absolute error (PAE) of approximately 9.5% could be achieved for a network with five hidden units (compared with 11% for the static neural network model). Three different neural networks were trained with all the data (containing an unknown number of incidents) and secondly using data wholly obtained around incidents. Results showed that from the three different models, the ‘simple dynamic model’ with the first five units fixed (and subsequent hidden units distributed amongst these) had the best forecasting performance. Comparisons were also made of the networks’ performance on data obtained around incidents. More detailed analysis of how the performance of the three networks changed through a single day (including an incident) showed that the simple dynamic model again outperformed the other two networks in all time periods. The use of ‘piecewise’ models (i.e. where a different model is selected according to traffic flow conditions) for data obtained around incidents highlighted good performance again by the simple dynamic network. This outperformed the standard Kalman filter neural network for a medium-sized network and is our overall recommendation for any future application.  相似文献   

19.
The health cost of on-road air pollution exposure is a component of traffic marginal costs that has not previously been assessed. The main objective of this paper is to introduce on-road pollution exposure as an externality of traffic, particularly important during traffic congestion when on-road pollution exposure is highest. Marginal private and external cost equations are developed that include on-road pollution exposure in addition to time, fuel, and pollution emissions components. The marginal external cost of on-road exposure includes terms for the marginal vehicle’s emissions, the increased emissions from all vehicles caused by additional congestion from the marginal vehicle, and the additional exposure duration for all travelers caused by additional congestion from the marginal vehicle. A sensitivity analysis shows that on-road pollution exposure can be a large portion (18%) of marginal social costs of traffic flow near freeway capacity, ranging from 4% to 38% with different exposure parameters. In an optimal pricing scenario, excluding the on-road exposure externality can lead to 6% residual welfare loss because of sub-optimal tolls. While regional pollution generates greater costs in uncongested conditions, on-road exposure comes to dominate health costs on congested freeways because of increased duration and intensity of exposure. The estimated marginal cost and benefit curves indicate a theoretical preference for price controls to address the externality problem. The inclusion of on-road exposure costs reduces the magnitudes of projects required to cover implementation costs for intelligent transportation system (ITS) improvements; the net benefits of road-pricing ITS systems are increased more than the net benefits of ITS traffic flow improvements. When considering distinct vehicle classes, inclusion of on-road exposure costs greatly increases heavy-duty vehicle marginal costs because of their higher emissions rates and greater roadway capacity utilization. Lastly, there are large uncertainties associated with the parameters utilized in the estimation of health outcomes that are a function of travel pollution intensity and duration. More research is needed to develop on-road exposure modeling tools that link repeated short-duration exposure and health outcomes.  相似文献   

20.
Short-term traffic flow prediction is an integral part in most of Intelligent Transportation Systems (ITS) research and applications. Many researchers have already developed various methods that predict the future traffic condition from the historical database. Nevertheless, there has not been sufficient effort made to study how to identify and utilize the different factors that affect the traffic flow. In order to improve the performance of short-term traffic flow prediction, it is necessary to consider sufficient information related to the road section to be predicted. In this paper, we propose a method of constructing traffic state vectors by using mutual information (MI). First, the variables with different time delays are generated from the historical traffic time series, and the spatio-temporal correlations between the road sections in urban road network are evaluated by the MI. Then, the variables with the highest correlation related to the target traffic flow are selected by using a greedy search algorithm to construct the traffic state vector. The K-Nearest Neighbor (KNN) model is adapted for the application of the proposed state vector. Experimental results on real-world traffic data show that the proposed method of constructing traffic state vector provides good prediction accuracy in short-term traffic prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号