首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.

An important decision faced by airline schedulers is how to adapt the flight schedule and aircraft assignment to unforeseen perturbations in an established schedule. In the face of unforeseen aircraft delays, schedulers have to decide which flights to delay, and when delays become excessive, which to cancel. Current scheduling models deal with simple decision problems of delay or cancellation, but not with both simultaneously. But in practice the optimal decision may involve results from the integration of both flight cancellations and delays. In Part I of this paper, a quadratic programming model for the integration decision problem is given. The model can formulate the integration of flight cancellations and delays as well as some special cases, such as the ferrying of surplus aircraft and the possibility of swapping different types of aircraft. In this paper, based on the special structure of the model, an effective algorithm is presented, sufficient computational experiments are conducted and some results are reported. These show that we can expect to obtain a sufficiently good solution in terms of reasonable CPU time.  相似文献   

2.
Abstract

This paper develops a heuristic algorithm for the allocation of airport runway capacity to minimise the cost of arrival and departure aircraft/flight delays. The algorithm is developed as a potential alternative to optimisation models based on linear and integer programming. The algorithm is based on heuristic (‘greedy’) criteria that closely reflect the ‘rules of thumb’ used by air traffic controllers. Using inputs such as arrival and departure demand, airport runway system capacity envelopes and cost of aircraft/flight delays, the main output minimises the cost of arrival and departure delays as well as the corresponding interdependent airport runway system arrival and departure capacity allocation. The algorithm is applied to traffic scenarios at three busy US airports. The results are used to validate the performance of the proposed heuristic algorithm against results from selected benchmarking optimisation models.  相似文献   

3.
Abstract

Airport slot misuse disturbs the efficient and continuous operation of capacity-constrained airports, leading to congestion and delay problems. Deviations from the coordinated schedule in regional airport systems that feature seasonal demand and delays in certain peak periods are studied in this article. The Greek airport system is considered as a case study. Deviations are quantified by computing the difference between scheduled and actual aircraft arrival times as well as the hourly slot capacity utilization ratio. Two collective indicators for airport benchmarking are proposed. An in-depth analysis of slot allocation deviations and the delays they cause is carried out for a representative sample of airports that are classified according to the proposed indicators. A brief discussion on potential measures to mitigate slot misuse is also presented.  相似文献   

4.

In this paper a practical technique for finding improved airline routings and schedules is developed. A dynamic programming algorithm is combined with a heuristic method for assigning routes to the aircraft such that the expected total contribution to profit is maximum. Expected passenger demands and priorities are taken to be an input to the model. The model may be used to check the effect on the total system of adding or removing aircraft or of varying aircraft capacity. Although the test runs were made on data for a six city‐ten aircraft array a smaller, more simple numerical example is given to demonstrate the model logic.  相似文献   

5.
Abstract

A real-time operation monitoring system – Aircraft Turnaround Monitoring System – is developed based on a system framework to monitor aircraft turnaround operations at an airport. Mobile computing devices (PDAs) and wireless network technology General Packet Radio Service (GPRS) are used to implement the real-time monitoring system for an airline. System implementation and test results indicate that real-time operation monitoring can potentially reduce delays occurring from airline operations. Proactive measures can be taken immediately by ground handling staff to reduce delays, once the risk of delays and potential delay propagation is identified. The availability of detailed operating data can help airlines identify the root delay causes from complex connections among aircraft, flight/cabin crew and passengers. In addition, these operating data also shed some light on the future development of aircraft routing algorithms in order to consider explicitly stochastic disruptions and delay propagation in airline schedule planning.  相似文献   

6.
Abstract

When airlines are faced with some unforeseen short-term events, they have to reconstruct their flight schedules. Although aircraft recovery decisions affect passengers, these disrupted passengers and recovering them have not been explicitly considered in most previous aircraft recovery models. This paper presents an assignment model for airline schedule recovery which recovers both aircraft and disrupted passengers simultaneously, using a rolling horizon time framework. Our model examines possible flight retiming, aircraft swapping, over-flying, ferrying, utilization of reserve aircraft, cancellation and passenger reassignment to generate an efficient schedule recovery plan. The model ensures that the schedule returns to normal within a certain time and the objective is to minimize operational recovery aircraft cost, cancellation and delay cost as well as disrupted passenger cost. The model is tested using a data-set with two disruption scenarios. The computational results show that it is capable of handling the integrated aircraft and passenger recovery problem successfully.  相似文献   

7.

Environmental charges are one of the economic instruments for controlling externalities. Their application to commercial flights has become a preferred method of encouraging the sustainable development of the air transport industry. Two kinds of externalities, aircraft noise and engine emissions, both generating profound impacts on human beings and on the environment, are considered here. The hedonic price method is applied to calculate the social cost of aircraft noise during the landing and take-off stages of the flight. The marginal impact of each flight with specific aircraft/engine combinations is derived for the allocation of aggregate noise social costs. In contrast, the dose - response method is applied to estimate the social cost of each engine exhaust pollutant during different flight modes. The combination of aircraft noise and engine emissions social costs is then evaluated on the basis of several environmental charge mechanism scenarios, using Amsterdam Airport Schiphol as a case study. It is shown that the current noise or engine emissions related charges at airports are lower than the actual social costs of their respective externalities. The implications of charge mechanism scenarios are subsequently discussed and evaluated in terms of their impacts on airline costs, airfares and passenger demand.  相似文献   

8.
A sophisticated flight schedule might be easily disrupted due to adverse weather, aircraft mechanical failures, crew absences, etc. Airlines incur huge costs stemming from such flight schedule disruptions in addition to the serious inconveniences experienced by passengers. Therefore, an efficient recovery solution that simultaneously decreases an airline's recovery cost while simultaneously mitigating passenger dissatisfaction is of great importance to the airline industry. In this paper, we study the integrated airline service recovery problem in which the aircraft and passenger schedule recovery problems are simultaneously addressed, with the objective of minimizing aircraft recovery and operating costs, passenger itinerary delay cost, and passenger itinerary cancellation cost.Recognizing the inherent difficulty in modeling the integrated airline service recovery problem within a single formulation (due to its huge solution space and quick response requirement), we propose a three-stage sequential math-heuristic framework to efficiently solve this problem, wherein the flight schedules and aircraft rotations are recovered in the first stage, Then, a flight rescheduling problem and passenger schedule recovery problems are iteratively solved in the next two stages. Time-space network flow representations, along with mixed-integer programming formulations, and algorithms that take advantages of the underlying problem structures, are proposed for each of three stages. This algorithm was tested on realistic data provided by the ROADEF 2009 challenge and the computational results reveal that our algorithm generated the best solution in nearly 72% of the test instances, and a near-optimal solution was achieved in the remaining instances within an acceptable timeframe. Furthermore, we also ran additional computational runs to explore the underlying characteristics of the proposed algorithm, and the recorded insights can serve as a useful guide during practical implementations of this algorithm.  相似文献   

9.
In this paper we present a solution methodology based on the stochastic branch and bound algorithm to find optimal, or close to optimal, solutions to the stochastic airport runway scheduling problem. The objective of the scheduling problem is to find a sequence of aircraft operations on one or several runways that minimizes the total makespan, given uncertain aircraft availability at the runway. Enhancements to the general stochastic branch and bound algorithm are proposed and we give the specific details pertaining to runway scheduling. We show how the algorithm can be terminated early with solutions that are close to optimal, and investigate the impact of the uncertainty level. The computational experiment indicates that the sequences obtained using the stochastic branch and bound algorithm have, on average, 5–7% shorter makespans than sequences obtained using deterministic sequencing models. In addition, the proposed algorithm is able to solve instances with 14 aircraft using less than 1 min of computation time.  相似文献   

10.
Abstract

This paper presents a novel application of a Method of Inequality-based Multi-objective Genetic Algorithm (MMGA) to generate an efficient time-effective multi-fleet aircraft routing algorithm in response to the schedule disruption of short-haul flights. It attempts to optimize objective functions involving ground turn-around times, flight connections, flight swaps, total flight delay time and a 30-minute maximum delay time of original schedules. The MMGA approach, which combines a traditional Genetic Algorithm (GA) with a multi-objective optimization method, can address multiple objectives at the same time, then explore the optimal solution. The airline schedule disruption management problem is traditionally solved by Operations Research (OR) techniques that always require a precise mathematical model. However, airline operations involve too many factors that must be considered dynamically, making a precise mathematical model difficult to define. Experimental results based on a real airline flight schedule demonstrate that the proposed method, Multi-objective Optimization Airline Disruption Management by GA, can recover the perturbation efficiently within a very short time. Our results further demonstrate that the application can yield high quality solutions quickly and, consequently, has potential to be employed as a real-time decision support tool for practical complex airline operations.  相似文献   

11.
Abstract

In this paper a route-based dynamic deterministic user equilibrium assignment model is presented. Some features of the linear travel time model are first investigated and then a divided linear travel time model is proposed for the estimation of link travel time: it addresses the limitations of the linear travel time model. For the application of the proposed model to general transportation networks, this paper provides thorough investigations on the computational issues in dynamic traffic assignment with many-to-many OD pairs and presents an efficient solution procedure. The numerical calculations demonstrate that the proposed model and solution algorithm produce satisfactory solutions for a network of substantial size with many-to-many OD pairs. Comparisons of assignment results are also made to show the impacts of incorporation of different link travel time models on the assignment results.  相似文献   

12.
This article considers the optimisation of the sequence for clearing snow from stretches of the manoeuvring area of an airport. This issue involves the optimisation of limited resources to remove snow from taxiways and runways thereby leaving them in an acceptable condition for operating aircraft. The airfield is divided into subsets of significant stretches for the purpose of operations and target times are established during which these are open to aircraft traffic. The document contains several mathematical models each with different functions, such as the end time of the process, the sum of the end times of each stretch and gap between the estimated and the real end times. During this process, we introduce different operating restrictions on partial fulfilment of the operational targets as applied to zones of special interest, or relating to the operation of the snow‐clearing machines. The problem is solved by optimisation based on linear programming. The article gives the results of the computational tests carried out on five distinct models of the manoeuvring area, which cover increasingly complex situations and larger areas. The mathematical model is particularised for the case of the manoeuvring area of Adolfo Suarez Madrid—Barajas Airport. Copyright © 2016 John Wiley & Sons, Ltd.
    Highlights
  • Optimal sequence for clearing snow from the manoeuvring area of an airport.
  • Contains optimising algorithms solved using CPLEX LP‐based tree search.
  • Restrictions on partial fulfilment of operational targets applied to subsets of significant stretches, used for planning the operation of snow‐clearing machines.
  • Model applied to the case of the manoeuvring area of Adolfo Suárez Madrid Barajas Airport.
  • Conclusions are given on the results of the computational tests carried out. There are five models of the manoeuvring area which cover increasingly complex situations and larger areas.
  相似文献   

13.
Abstract

A route-based combined model of dynamic deterministic route and departure time choice and a solution method for many origin and destination pairs is proposed. The divided linear travel time model is used to calculate the link travel time and to describe the propagation of flow over time. For the calculation of route travel times, the predictive ideal route travel time concept is adopted. Solving the combined model of dynamic deterministic route and departure time choice is shown to be equivalent to solving simultaneously a system of non-linear equations. A Newton-type iterative scheme is proposed to solve this problem. The performance of the proposed solution method is demonstrated using a version of the Sioux Falls network. This shows that the proposed solution method produces good equilibrium solutions with reasonable computational cost.  相似文献   

14.
Intelligent decision support systems for the real-time management of landing and take-off operations can be very effective in helping air traffic controllers to limit airport congestion at busy terminal control areas. The key optimization problem to be solved regards the assignment of airport resources to take-off and landing aircraft and the aircraft sequencing on them. The problem can be formulated as a mixed integer linear program. However, since this problem is strongly NP-hard, heuristic algorithms are typically adopted in practice to compute good quality solutions in a short computation time. This paper presents a number of algorithmic improvements implemented in the AGLIBRARY solver (a state-of-the-art optimization solver to deal with complex routing and scheduling problems) in order to improve the possibility of finding good quality solutions quickly. The proposed framework starts from a good initial solution for the aircraft scheduling problem with fixed routes (given the resources to be traversed by each aircraft), computed via a truncated branch-and-bound algorithm. A metaheuristic is then applied to improve the solution by re-routing some aircraft in the terminal control area. New metaheuristics, based on variable neighbourhood search, tabu search and hybrid schemes, are introduced. Computational experiments are performed on an Italian terminal control area under various types of disturbances, including multiple aircraft delays and a temporarily disrupted runway. The metaheuristics achieve solutions of remarkable quality, within a small computation time, compared with a commercial solver and with the previous versions of AGLIBRARY.  相似文献   

15.
Abstract

Understanding work zone traffic behavior is important for the planning and operation of work zones. The objective of this paper is to develop a mathematical model of work zone traffic flow elements by analyzing the relationships between speed, flow, and density that can be used to estimate the capacity of work zones. Traffic flow data were collected from 22 work zone sites on South Carolina interstate highways. The scatter plots of the collected data demonstrate that the relationship between speed and density does not follow Greenshields’ linear model. A non-linear hyperbolic model was developed to describe the relationship between speed and density. Using this model the capacity of a work zone was estimated to be 1550 passenger cars per hour for 2-lane to 1-lane closures. Adjustments to this capacity value to consider other types of vehicle as well as the work zone intensity are provided. Highway agencies can use this estimated capacity along with anticipated traffic demand to schedule work zone operations to avoid long periods of over-saturation.

The tapered approach to work zone lane closures used by South Carolina is similar to methods used in work zones throughout the world. The authors believe that the methodology described in this paper for modeling work zone traffic as well as estimating work zone capacity is transferable to other countries. The conversion of actual volumes to passenger car equivalents may have to be modified due to the significant differences in traffic makeup between the United States and other countries.  相似文献   

16.

As air transport demand keeps growing more quickly than system capacity, efficient and effective management of system capacity becomes essential to the operation of the future global air traffic system. Although research in the past two decades has made significant progress in relevant research fields, e.g. air traffic flow management and airport capacity modelling, research loopholes in air traffic management still exist and links between different research areas are required to enhance the system performance of air traffic management. Hence, the objective of this paper is to review systematically current research in the literature about the issue of air traffic management to prioritize productive research areas. Papers about air traffic management are discussed and categorized into two levels: system and airport. The system level of air transport research includes two main topics: air traffic flow management and airspace research. On the airport level, research topics are: airport capacity, airport facility utilization, aircraft operations in the airport terminal manoeuvring area as well as aircraft ground operations research. Potential research interests to focus on in the future are the integration between airspace capacity and airport capacity, the establishment of airport information systems to use airport capacity better, and the improvement in flight schedule planning to improve the reliability of schedule implementation.  相似文献   

17.

One of the great dilemmas facing major airports is the problem of capacity and seasonal surges of activity. This paper suggests a system of small, inexpensive Airport Terminal Modules, which together with a new type of Mobile Lounge, could make available a considerable degree of flexibility. The ATM's are designed to allow maximum variations of aircraft type and passenger load as well as high ground utilization. This concept would allow major airports to be extended with a minimum of inconvenience as demand becomes apparent, thereby allowing financial expenditure to be carefully controlled and more evenly spread.  相似文献   

18.
Abstract

This paper concerns the newspaper distribution problem. It addresses the transportation of newspapers from printing plant to newsagents with distribution vehicles under various particular constraints. The objective is to minimize the distance traveled by the vehicles and/or the number of vehicles. In this study, the routes for vehicles of a leading newspaper distributor company in the Turkish press sector are examined. The problem is defined as determining optimal delivery routes for a fleet of homogeneous vehicles, starting and ending at the printing plant that is required to serve a number of geographically dispersed newsagents with known demands under capacity and time constraints, while minimizing the total distribution cost. An integar linear programming model is proposed as a solution using Cplex. Computational results demonstrate that the proposed model is fast and able to find optimal solutions for problem scenarios with up to 55 newsagents within reasonable computing times. It was found that the proposed model reduced the delivery cost by 21% on average when compared to the current manual method. The results show that this model is adequate for medium-sized distribution problems.  相似文献   

19.
Abstract

This paper develops a model for estimating unsignalized intersection delays which can be applied to traffic assignment (TA) models. Current unsignalized intersection delay models have been developed mostly for operational purposes, and demand detailed geometric data and complicated procedures to estimate delay. These difficulties result in unsignalized intersection delays being ignored or assumed as a constant in TA models.

Video and vehicle license plate number recognition methods are used to collect traffic volume data and to measure delays during peak and off-peak traffic periods at four unsignalized intersections in the city of Tehran, Iran. Data on geometric design elements are measured through field surveys. An empirical approach is used to develop a delay model as a function of influencing factors based on 5- and 15-min time intervals. The proposed model estimates delays on each approach based on total traffic volumes, rights-of-way of the subject approach and the intersection friction factor. The effect of conflicting traffic flows is considered implicitly by using the intersection friction factor. As a result, the developed delay model guarantees the convergence of TA solution methods.

A comparison between delay models performed using different time intervals shows that the coefficients of determination, R 2, increases from 43.2% to 63.1% as the time interval increases from 5- to 15-min. The US Highway Capacity Manual (HCM) delay model (which is widely used in Iran) is validated using the field data and it is found that it overestimates delay, especially in the high delay ranges.  相似文献   

20.
Abstract

In this article, a cargo container loading plan model is developed based on the operations of FedEx, the international air express carrier. The objective is to minimize total container handling cost, subject to related operating constraints. The model is expected to be a useful planning tool whereby international air express carriers such as FedEx can decide on container loading plans that will lead to lower operating costs, thus enhancing profits and market competitiveness. The model is formulated as a non-linear mixed integer program that is characterized as NP-hard. A solution method is then developed, with the use of the mathematical programming solver, CPLEX, to solve the problem efficiently. To evaluate the model and the solution method, we perform a case study using data from FedEx. The preliminary results indicate that the model and the solution method are both efficient and effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号