首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了验证Q系统围岩分级及支护设计方法在大型地下洞室的适用性,文章依托锦州大型地下储油洞库工程,基于现场Q值统计数据与地质素描成果,并结合Q值相关的经验公式,建立了Q值与RMR值、BQ值的数学函数关系,得到了Q值与围岩主要力学参数的相关性,并提出了现场Q值快速获取的方法。研究结果表明,Q值与RMR值成对数函数关系,相关系数高达0.99,两种方法得到的围岩分级基本相同;Q值与BQ值成线性函数关系,相关系数高达0.92;在Q值及RMR值较小时,由BQ法得到的围岩分级与上述两者基本相同,但当Q值及RMR值较大,由此得到的围岩级别较高时,由BQ值得到的围岩级别大约相差一个级别。文章建立了Q值相关常用数据定量表,在无法取得现场实测值的情况下,可通过查表得到相对较为准确的参数值。  相似文献   

2.
为研究不同净距双洞隧道在上下台阶法同时开挖下的围岩变形、受力及支护受力情况,文章基于Midas/GTS软件平台对10m、14m、18m、22m净距双洞隧道进行了数值模拟分析。结果表明:(1)隧道中岩墙一侧拱腰水平位移相比左侧拱腰大,拱顶处、仰拱处水平位移较小,且随着净距变化其值基本保持不变;(2)隧道拱顶及仰拱位置处围岩竖向位移较大,拱腰处较小,随着隧道净距增大各部位竖向位移均减小;(3)随着隧道净距的增大拱顶及仰拱处的水平应力及竖向应力逐渐减小,但减小幅度较小,同时拱腰处水平应力及竖向应力变化较大,且减小幅度不断扩大;(4)随着净距的增大,锚杆轴力最大值及喷混结构最大拉应力发生了减小,减小幅度逐渐扩大。  相似文献   

3.
围岩位移信息的收集对指导新奥法隧道施工具有重要意义。在各种因素制约下,围岩位移信息采集不可避免存在损失位移。文章依托阿拉坦隧道工程实例,以现场实测全位移数据为基础,确定了各施工阶段的围岩应力释放率,并在此基础上,对隧道浅埋洞口段地表与拱部围岩的全位移变化规律进行了三维数值分析。结果表明:隧道开挖过程中,地表测点竖向位移最大为33 mm,与实测结果基本一致,且地表测点竖向位移远大于水平位移,竖向损失位移比例占围岩总位移量的比例高达42.86%;隧道拱顶围岩竖向位移计算值为60 mm,与现场实测结果基本一致,隧道拱部围岩不同方向的损失位移所占全位移的比例不同,水平方向约为21.42%,竖向高达40%以上;掌子面通过监测断面前后约1.0倍洞径范围内围岩变形速率较大,在此区间,围岩竖向位移发生量约占总沉降量的70%。  相似文献   

4.
文章以黄土含节理地区隧道开挖为例,采用有限元软件Midas建立模型,并考虑不同节理位置和节理倾角两种工况,对隧道围岩变形以及应力变化规律进行了分析。结果表明:(1)考虑不同节理位置时,对于水平位移,节理的存在会略减小靠近节理一侧拱腰的最大水平位移;对于竖向位移,节理的存在使得最大竖向位移向节理处靠近。节理在拱腰、拱肩和拱顶时,其最大竖向位移比无节理时分别大8.8%、10.3%和0.3%,节理在拱肩处应力比拱腰和拱顶时围岩应力分别大3.2%和4.0%。(2)节理倾角为30°、45°、60°和90°时的最大竖向位移值比无节理时分别大23.0%、14.8%、9.3%和7.4%,随着节理倾角的增大,最大竖向位移值逐渐减小;节理倾角为45°、60°和90°时的最大应力比节理倾角为30°时分别小0.4%、1.1%和2.0%,随着节理倾角的增大,最大围岩应力逐渐减小,但整体变化趋势不大。  相似文献   

5.
针对红粘土与砂岩夹泥岩接触带围岩上软下硬、自稳能力差的特点,文章通过现场调研和分析,明确了隧道施工原则,并结合现场实际采用数值模拟计算方法优化了施工工法和支护参数,现场应用效果表明:在红粘土与砂岩夹泥岩接触带地层中施工,岩性分界面位置对隧道变形及结构应力影响明显,随着红粘土在隧道开挖断面的占比增大,隧道洞周位移及初期支护应力显著增大;采取调整台阶高度、取消预留核心土等措施优化施工工法后,最大变形值未超出允许值,初期支护最大压应力未达到材料破坏强度,围岩应力集中减弱,满足安全施工的要求;掘进速度明显提升,避免了岩性分界面位置处围岩易掉块、坍塌等问题。  相似文献   

6.
为揭示复合地层中浅埋盾构隧道开挖引起的地层位移及应力,文章基于Покровский当层法,将该问题等效为求解均质地层位移及应力分布问题,结合Loganathan修正公式,推导了复合地层中浅埋盾构隧道开挖引起的地层位移、应变和应力分量表达式,构建了地层位移场分布预测模型。同时基于理论预测模型,对比分析了工程实例的预测位移与实测数据的差别,讨论了上下层土体弹性模量比n、地层深度z和土体泊松比μ对隧道开挖的影响;在分析含软弱夹层隧道开挖问题时,提出了软弱夹层等效厚度K的概念。研究结果表明:随着n的增加,地表最大沉降值Smax、地表附加水平应力σx和竖向应力σz的最大值均有所减小;随着z的增加,地层最大沉降值有所增大;随着μ的增加,Smax有所减小,地表附加水平拉应力σx和竖向应力σz的最大值有所增加;当软弱夹层等效厚度K增加,Smax有所增加;隧道施工时,上硬下软地层产生位移及应力扩散现象,上软下硬地层产生位移及应力集中现象。  相似文献   

7.
深基坑施工会对周围土体、围护结构及周围环境的安全造成极其不利影响。文章依托佛莞城际铁路长大深基坑工程,针对基坑开挖过程中地表沉降、建筑物沉降、墙体深层水平位移、墙顶水平位移及竖向位移和支撑轴力实施监控量测,并对监测结果进行深入的分析。结果表明:在基坑开挖初期,墙体侧移表现出悬臂弯曲状,水平位移最大值点在墙顶附近处。随着开挖深度的增大,其最大值点位置逐渐向下移动,最终出现在坑底处;基坑开挖60~120 d内,墙顶竖向位移发展非常迅速,墙顶水平位移达到位移总量的65%左右。基坑开挖120 d后,其位移量变化越来越慢;随着基坑开挖深度增大,支撑轴力越来越大,基坑开挖完成后各道支撑轴力均达到最大值。  相似文献   

8.
为研究散岩堆积体中隧道洞口段最适宜的开挖方式,文章以火凤山隧道(双线隧道)为工程背景,采用拉格朗日有限差分软件FLAC3D建立土体三维计算模型,对施工期隧道洞口段分别采用三台阶、三台阶预留核心土、三台阶七步法、CD法和CRD法共五种工法进行数值模拟开挖,分析不同施工工法下围岩应力分布及变形规律,提出适用于散岩堆积体地层条件下的隧道洞口段施工工法。研究结果表明:从隧道竖向位移分析得出,五种工法对应的最大位移分别为28.18cm、25.90cm、21.43cm、18.58cm、14.13cm;从围岩应力来看,五种工法围岩应力分布规律上并未出现明显区别,只是在量值上有一定差异;随着围岩的不断开挖,隧道埋深逐渐增大,隧道各特征点的最大位移值也不断增大;在掌子面前方一定范围内,即开挖断面还未达到监测断面的部分区域已经产生了一定的变形,但是变形较小;当开挖断面推进到监测断面时,随着开挖面的推进,拱顶下沉不断增大,其特点是初期下沉速率很大,而后随离开掌子面的距离变大,其速度逐渐减缓,并趋于稳定,围岩收敛先快速增长后逐渐平稳。  相似文献   

9.
文章以某地高速公路路堤填筑为研究对象,采用配制的改良土进行路堤填筑模拟分析,并研究了不同填筑高度下的路堤位移及应力变化规律。结果表明:(1)路堤水平位移沿中心两侧呈对称分布,从中心往两侧路肩方向水平位移依次增大,且路堤顶部位移随填筑高度增大,路堤填筑高度越大越不安全;(2)路堤顶部竖向位移最大,沿深度向下竖向位移逐渐减小,且路堤顶部中心最大竖向位移随填筑高度增大而增大,沿路堤中心向两侧竖向位移逐渐减小;(3)路堤坡脚位置处水平应力随路堤高度增加而增大,当填筑高度增大时应采取一定的坡面防护措施;(4)随着路堤高度的增加,路堤水平应力和竖向应力逐渐增大,且水平和竖向应力均随路堤填筑高度增大而增大。  相似文献   

10.
在不同地质条件下浅埋偏压小净距隧道的施工力学效应会有很大不同,尤其在半软半硬岩层中,隧道开挖会破坏软硬岩层交界处软弱围岩的稳定性,其施工力学效应更为特殊。文章采用有限差分软件FLAC3D对15种工况下隧道开挖进行了模拟,对均质硬岩、均质软岩和竖向半软半硬岩中不同净距隧道的拱顶沉降、中岩墙的水平位移、中岩墙最大主应力和围岩塑性区进行了分析。结果表明,均质硬岩隧道拱顶沉降最小,竖向半软半硬岩隧道拱顶沉降和硬岩比较接近,软弱围岩隧道拱顶沉降最大;竖向半软半硬岩隧道中岩柱上部围岩稳定性较差,中部水平位移最大;隧道开挖引起软岩侧洞室上覆盖层围岩稳定性变差,可能引起隧道坍塌。  相似文献   

11.
为研究扬州膨胀土地层中深基坑施工过程受力与变形特性,文章基于扬州某隧道工程深基坑开挖实例,进行了大量现场实测分析,结果表明:(1)围护结构深层水平位移最大值位置基本位于基坑开挖面以上0~7 m范围内。最大深层水平位移值约处于0.13%H~0.34%H之间,墙顶竖向位移处于-0.13%H~0.11%H之间;(2)立柱隆沉值位于-0.05%H~0.17%H之间。相邻两立柱的差异沉降值为0.14%;(3)地表沉降值约位于0.04%H~0.14%H之间,最大地表沉降值在距离基坑边0.5H_e~0.7H_e范围内,影响范围约为2.5H_e。而最大地表沉降值与最大围护结构侧移的比值约为0.27~0.42范围,地表沉降值远小于围护结构水平位移值;(4)孔隙水压力和侧向土压力在施工中逐渐减小,土压力包络线为典型的梯形包络线的形式,土压力位于1.07γH_e包络线范围内;(5)膨胀土基坑在施工中表现出明显的膨胀变形。分析得到的各项受力与变形值范围,对于扬州膨胀土基坑设计和施工变形控制具有一定参考价值。  相似文献   

12.
地铁附属结构施工时受场地及工期影响往往采取爬坡开挖方式。为了确定其掌子面的安全状态,文章通过理论分析并结合数值模拟,对比分析了爬坡开挖与水平开挖下掌子面的稳定性。其中,采用极限分析上限法掌子面破坏区假定,对比分析了爬坡开挖与水平开挖的破坏区影响范围及位置;采用数值分析方法,研究了爬坡与水平开挖不同工况下等值应变区的位置和掌子面水平位移变化规律。分析结果表明:隧道爬坡开挖造成的影响区范围略大于水平开挖,影响区位置比水平开挖略低;掌子面0~1/3高度范围内爬坡开挖引起的水平位移比水平开挖略大,掌子面1/3高度以上范围内略小;爬坡与水平开挖下掌子面最大水平位移均位于掌子面1/3高度处,且爬坡开挖下掌子面变形并不大于水平开挖;在不考虑超前支护的情况下,爬坡与水平开挖的掌子面稳定性基本一致,而在选取适宜的超前支护措施前提下,能够保证掌子面的稳定性。  相似文献   

13.
为研究三台阶法施工对原位扩建隧道结构及邻近既有隧道扰动的影响规律,文章依托福建厦蓉高速公路后祠隧道原位扩建工程,分别对隧道围岩及支护结构应力、松动圈及应力场和邻近既有隧道爆破振动进行了现场监测。结果表明,断面各部位围岩及支护结构应力随时间推移而缓慢增加,最终趋于平稳,且每级台阶开挖均会对其产生扰动,表现为应力的突增;扩建后隧道围岩松动圈拱顶位于6~9 m深处,左右边墙均位于0~6 m深处,拱顶沉降位移大于两帮收敛位移。左边墙围岩应力大于右边墙围岩应力,洞周3 m深处围岩应力小于6 m深处围岩应力,开挖造成的围岩塑性区为3 m左右;施工中实际爆破振速大多小于设防标准,爆破对既有隧道的支护结构体系未造成重大破坏,最大爆破振速出现在监测断面前10 m左右的位置,与掌子面相比振速增长2.9%~4.5%,且围岩质量越好,峰值振速越大,最大峰值振速断面前方振速衰减速度远远小于后方振速衰减速度。  相似文献   

14.
粉煤灰地层具有自稳能力差、结构松散、吸水性强、不均匀等特点,因此在该地层修建大断面隧道施工难度极大.本文以盐坪坝隧道为依托,利用Rhinoceros建模并将模型导入FLAC3D计算,对大断面连拱隧道穿粉煤灰地层掌子面附近围岩变形规律进行研究.研究结果表明:中导洞-左右侧壁预留核心土法和中导洞-左右侧壁台阶法开挖时,竖向位移普遍大于水平位移,水平最大位移出现在右洞拱脚约9 mm处,竖向最大位移出现在右洞拱肩约24 mm处,左洞先开挖产生的偏压作用导致右洞围岩位移明显增大,其中中导洞-左右侧壁台阶法在施作二次衬砌后围岩变形速率更大,因此选择中导洞-左右侧壁预留核心土法更有利于围岩稳定.  相似文献   

15.
现有的极限位移及其管理基准主要是针对普速铁路隧道断面在支护封闭后的工况,大多没有考虑隧道施工的阶段性。文章以现有V级围岩高速铁路隧道采用三台阶法施工为例,采用FLAC3D软件模拟不同施工阶段拱顶位移,通过尖点突变理论得到不同施工阶段的拱顶极限位移。结果表明,V级围岩隧道采用三台阶法施工时,上台阶开挖对隧道最终拱顶极限位移贡献率最大,中台阶次之,下台阶及仰拱段开挖几乎无影响;在50~300 m计算埋深条件下,V级围岩隧道同一施工阶段的拱顶极限位移与埋深都呈线性关系。同时采用灰关联分析了不同围岩参数对极限位移的敏感性,得到对拱顶极限位移影响程度由大到小的顺序为:围岩密度ρ、弹性模量E、粘聚力c、泊松比μ、内摩擦角φ。  相似文献   

16.
通过对汶马高速公路鹧鸪山软岩隧道多次出现的大变形现象进行分析,文章将围岩破坏分为3大类,即软岩塑流、板梁弯曲变形及结构面滑移。针对建设过程中的大变形问题,选取了50 m典型围岩区段作为试验段,开展了两台阶开挖参数优化试验及两台阶与三台阶开挖工法的比选试验。两台阶开挖参数优化试验表明,开挖进尺以及下台阶左右侧前后间距对隧道的稳定性影响最大。开挖工法比选试验中,通过对两台阶与三台阶开挖洞周位移、围岩与初期支护间压力及钢拱架受力的对比发现,两台阶开挖方法由于一次开挖断面过大,围岩来压快,导致洞周变形值及围岩与初期支护压力值相对偏大,钢拱架安全储备相对不足。因此,对于处于复杂区域环境中的软岩隧道,应结合现场实际情况适当调整围岩的预留变形量;合理地选择开挖工法与开挖进尺,且在围岩条件很差的情况下,采用三台阶法可有效控制大变形灾害的产生。  相似文献   

17.
文章考虑基坑坑底和侧壁的开挖卸荷应力以及坑底围护结构的遮拦效应,基于Mindlin位移解公式,提出了一种半解析半经验解方法,推导得到了基坑开挖引起邻近既有隧道位移的计算公式,分析了基坑尺寸、与隧道相对位置的改变以及加固控制措施对既有地铁隧道位移的影响。研究结果表明:隧道的水平和竖向位移随着隧道埋深的加大而有所增加;随着基坑与隧道净距的减小,隧道位移则明显增大;基坑开挖长度的增加对隧道位移影响较小,而基坑开挖宽度和开挖深度会对隧道位移产生明显影响;该方法可以考虑加固控制措施的效果,随着基坑围护结构应力损失率的减小,隧道最大水平位移呈线性减小,但隧道竖向位移变化不大。  相似文献   

18.
由于深埋隧洞围岩显著的流变特点,其变形范围及洞壁位移通常在施作初期支护一段时间后才趋于稳定,因此研究锚杆支护后隧洞围岩变形范围及其洞壁位移量将为支护参数优化及预留开挖量提供重要的理论依据。文章通过建立预应力锚杆与隧洞围岩的相互作用力学模型,分析了杆体与围岩相对位移为零的中性点位置及其最大轴力值。基于锚杆中性点理论,推导了工程扰动、锚杆预应力和孔隙水压耦合作用下隧洞围岩变形范围以及洞壁位移的计算公式。结果表明:多因素耦合作用下隧洞围岩变形范围及洞壁位移随工程扰动和孔隙水压的增大而逐步增加,随锚杆预应力的增大而减小。最后,以秦岭某引水隧洞为工程背景,利用所提出的理论公式计算了该隧洞极不稳定区段围岩变形范围及洞壁位移量,进而对原开挖及支护方案进行了优化。  相似文献   

19.
文章以粉土中既有隧道上部基坑开挖为例,采用ABAQUS有限元软件建立模型,在考虑了四种工况的基础上,分析基坑开挖对隧道顶部和底部位移、隧道水平位移、基坑底部位移以及桩墙位移的影响。结果表明:基坑开挖会引起隧道向上隆起,且隧道顶部隆起值大于底部隆起值,隧道底部隆起值大约为隧道顶部的60%~70%,隧道向上隆起速率与基坑开挖深度基本呈线性增长关系;随着基坑的开挖,隧道两拱腰向内部收敛,最大水平位移发生在隧道拱腰位置;随着基坑开挖深度的增加,基坑底部隆起增大,且隧道的存在对基坑底部的竖向变形影响较小,基坑中部隆起值略大于两侧;桩墙顶部水平位移最大,随着土体深度的增加,桩墙的水平位移逐渐减小。  相似文献   

20.
文章以重庆轨道交通环线莲花村车站隧道工程为依托,采用有限元数值模拟对超大断面隧道开挖时大倾角层状围岩的力学特性进行研究。通过建立大倾角岩层数值模型,对隧道进行不同工况的分步开挖计算,分析得到大倾角层状围岩的塑性区、应力和位移变化规律。结果表明:大倾角层状岩体塑性区位于层面内,层面塑性变形最大;围岩最大拉应力发生在上部中导洞围岩开挖支护过程中,上部左导洞以及中导洞外壁围岩产生最大拉应力;最大压应力发生在上部中导洞开挖支护过程中,大倾角岩层上部右导洞以及中部右导洞在各工况中产生最大压应力;隧道中、下部右导洞水平位移在二衬施加后达到最大,围岩最大下沉量位于上部左导洞处。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号