首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Improving the reliability of bus service has the potential to increase the attractiveness of public transit to current and prospective riders. An understanding of service reliability is necessary to develop strategies that help transit agencies provide better services. However, few studies have been conducted analyzing bus reliability in the metropolis of China. This paper presents an in-depth analysis of service reliability based on bus operational characteristics in Beijing. Three performance parameters, punctuality index based on routes (PIR), deviation index based on stops (DIS), and evenness index based on stops (EIS), are proposed for the evaluation of bus service reliability. Reliability involves routes, stops, punctuality, deviation, and evenness. The relationship among the three parameters is discussed using a numerical example. Subsequently, through a sampling survey of bus lines in Beijing, service reliability at the stop, route, and network levels are estimated. The effects of route length, headway, the distance from the stop to the origin terminal, and the use of exclusive bus lanes are also analyzed. The results indicate low service reliability for buses in Beijing and a high correlation between service reliability and route length, headway, distance from the stop to the origin terminal, and the provision of exclusive bus lanes.  相似文献   

2.
Although it is apparent that providing useful information has a positive effect on transit riders, no studies to date have investigated bus operators’ reactions to real-time arrival information and other potential rider information tools. In this study, the project team surveyed 253 bus operators to determine their views and values concerning the existing use of real-time information and to ask about future transit rider information applications. Almost all operators (93 and 91 % on two separate questions) were positive or neutral to the provision of real-time information. In addition, operators were receptive to building other new information applications, with all applications in the survey being supported by at least 60 % of the bus operators. The two most widely supported potential applications in the survey were additional tools to help blind and deaf-blind riders (89 % of bus operators favored) and an application that would aid riders in identifying physical stop, shelter and bus issues such as graffiti, broken parts or a need for lights (88 % of bus operators). Applications displaying data about past performance or current bus capacity received the least support (66 and 61 % respectively). This research gives a better understanding of the impact of rider information tools on bus operators, including the views and values of the operators, and the harms and benefits of such tools.  相似文献   

3.
This paper analyzes factors that influence the mode choice for trips between home and light rail stations, an often neglected part of a person’s trip making behavior. This is important for transit planning, demand modeling, and transit oriented development. Using transit survey data describing St. Louis MetroLink riders in the United States, this study found that some of the factors associated with increased shares of walking relative to other modes were full-time student status, higher income transit riders, and trips made during the evening. It was also found that crime at stations had an impact. In particular, crime made female transit riders more likely to be picked-up/dropped-off at the station. Females are more likely to be picked-up or dropped-off at night. Bus availability and convenience showed that transit riders that have a direct bus connection to a light rail station were more likely to use the bus. Private vehicle availability was strongly associated with increased probability of drive and park, when connecting to light rail.  相似文献   

4.
Contracted service comprises a significant proportion of total operating expenses in the provision of fixed-route bus transit service in the US. Despite its importance, the literature on the economic effects of transit service contracting has been limited to only a few studies since the mid-1990s, and is inconclusive due to problems with the nature and methodology of the past studies.This paper examines how the cost efficiency of providing fixed-route bus transit service varies by the degree of contracting. I make several improvements to previous studies and conduct a regression analysis that: (1) addresses the endogeneity problem between the contracting decision and cost efficiency, (2) differentiates between agencies that contract out only a portion of service from those that contract out all service, (3) takes into account the moderating effects of several factors on the effect of contracting on cost efficiency, and (4) uses a relatively larger set of cross-sectional time-series data constructed from the National Transit Database from 1992 to 2000.The analysis results show that the combined effects of contracting lower operating costs by $4.09 and $2.89 per vehicle hour for partial and full-contracting agencies, respectively, in the average case. These average cost savings translate into 7.8% and 5.5%, using the average operating cost per vehicle hour of $53.06. However, this improvement is not universal, because the effects of contracting on cost efficiency vary by factors such as peak-to-base ratio, agency size, the wage gap between bus operators in the public and private sectors, and agency type.  相似文献   

5.
Transit agencies implement many strategies in order to provide an attractive transportation service. This article aims to evaluate the impacts of implementing a combination of strategies, designed to improve the bus transit service, on running time and passenger satisfaction. These strategies include using smart card fare collection, introducing limited-stop bus service, implementing reserved bus lanes, using articulated buses, and implementing transit signal priority (TSP). This study uses stop-level data collected from the Société de transport de Montréal (STM)’s automatic vehicle location (AVL) and automatic passenger count (APC) systems, in Montréal, Canada. The combination of these strategies has lead to a 10.5% decline in running time along the limited stop service compared to the regular service. The regular route running time has increased by 1% on average compared to the initial time period. The study also shows that riders are generally satisfied with the service improvements. They tend to overestimate the savings associated with the implementation of this combination of strategies by 3.5-6.0 min and by 2.5-4.1 min for both the regular route and the limited stop service, respectively. This study helps transit planners and policy makers to better understand the effects of implementing a combination of strategies to improve running time and passenger’s perception of these changes in service.  相似文献   

6.
Abstract

People riding transit in the city of Detroit walk on average 0.8 miles (1.3 km) per round trip. The straight-line walking distance was found by buffering the bus stop locations and comparing them to the weighted US Census blocks. However, the true walking path follows the street pattern. Rather than undertaking network analysis, which would require connecting all addresses in the city with all bus stops, a Monte Carlo simulation was performed in geographic information system with random addresses. The simulation was performed over several addresses until convergence was achieved. The distances were converted to walking times and compared to the US National Household Transportation Survey.  相似文献   

7.
With several successful cases world‐wide, bus rapid transit (BRT) has reemerged as a cost‐effective transportation alternative for urban mobility. Despite the resurgence of BRT, there is a world‐wide paucity of research examining its ability to spur and development. By estimating spatial hedonic price functions, the paper determines the extent to which access to BRT stations in Bogotá, Colombia, currently are capitalized into land values. Results suggest that for every 5 min of additional walking time to a BRT station, the rental price of a property decreases by between 6.8 and 9.3%, after controlling for structural characteristics, neighbourhood attributes and proximity to the BRT corridor. Evaluated at the average walking time to a BRT station, this effect translates into an elasticity of between ??0.16 and ??0.22. Although these estimates cannot be attributable directly to the presence of the BRT system because a cross‐sectional design is used, they suggest that the land market in Bogotá values access to BRT station locations.  相似文献   

8.
Stop spacing and service frequency (i.e., the inverse of headway) are key elements in transit service planning. The trade‐offs between increasing accessibility and reducing travel time, which affect transit system performance, need to be carefully evaluated. The objective of this study is to optimize stop spacing and headway for a feeder bus route, considering the relationship between the variance of inter‐arrival time (VIAT), which yields the minimum total cost (including user and operator costs). A solution algorithm, called successive substitution, is adapted to efficiently search for the optimal solutions. In a numerical example, the developed model is applied to planning a feeder bus route in Newark, New Jersey. The results indicate that the optimal stop spacing should be longer that those suggested by previous studies where the impact of VIAT was ignored. Reducing VIAT via certain operational control strategies (i.e., holding/stop‐skipping, transit signal priority) may shorten stop spacing and improve accessibility. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Panel data offers the potential to represent the influence on travel choices of changing circumstances, past history and persistent individual differences (unobserved heterogeneity). A four-wave panel survey collected data on the travel choices of residents before and after the introduction of a new bus rapid transit service. The data shows gradual changes to bus use over the four waves, implying time was required for residents to become aware of the new service and to adapt to it. Ordered response models are estimated for bus use over the survey period. The results show that the influence of level of service (LOS) is underestimated if unobserved heterogeneity is not taken into account. The delayed response to the new service is able to be well represented by including LOS as a lagged variable. Current bus use is found to be conditioned on past bus use, but with additional influence of lagged LOS and unobserved heterogeneity. It is shown how different model specifications generate different evolution patterns with the most realistic predictions arising from a model which takes into account lagged responses to change in LOS and unobserved heterogeneity. The paper demonstrates the feasibility of developing panel data models that can be applied to forecasting the effect of interventions in the travel environment. Longer panels—encompassing periods of both stability and change—are required to support future efforts at modelling travel choice dynamics.  相似文献   

10.
In order to attract more choice riders, transit service must not only have a high level of service in terms of frequency and travel time but also must be reliable. Although transit agencies continuously work to improve on-time performance, such efforts often come at a substantial cost. One inexpensive way to combat the perception of unreliability from the user perspective is real-time transit information. The OneBusAway transit traveler information system provides real-time next bus countdown information for riders of King County Metro via website, telephone, text-messaging, and smart phone applications. Although previous studies have looked at traveler response to real-time information, few have addressed real-time information via devices other than public display signs. For this study, researchers observed riders arriving at Seattle-area bus stops to measure their wait time while asking a series of questions, including how long they perceived that they had waited.The study found that for riders without real-time information, perceived wait time is greater than measured wait time. However, riders using real-time information do not perceive their wait time to be longer than their measured wait time. This is substantiated by the typical wait times that riders report. Real-time information users say that their average wait time is 7.5 min versus 9.9 min for those using traditional arrival information, a difference of about 30%. A model to predict the perceived wait time of bus riders was developed, with significant variables that include the measured wait time, an indicator variable for real-time information, an indicator variable for PM peak period, the bus frequency in buses per hour, and a self-reported typical aggravation level. The addition of real-time information decreases the perceived wait time by 0.7 min (about 13%).A critical finding of the study is that mobile real-time information reduces not only the perceived wait time, but also the actual wait time experienced by customers. Real-time information users in the study wait almost 2 min less than those arriving using traditional schedule information. Mobile real-time information has the ability to improve the experience of transit riders by making the information available to them before they reach the stop.  相似文献   

11.
In recent years, several transit agencies have been trying to be more competitive with the automobile to attract choice riders. Transit agencies can only be competitive if they can provide services that are reliable, have a short access and egress time, and have run times that are comparable to automobiles. Several transit agencies try to be competitive through offering faster service, such as limited-stop (express) bus service. This study uses AVL and APC data, in addition to a disaggregate data obtained from a travel behavior survey, to select stops and estimate run times for a new limited-stop service that will run parallel to a heavily used bus route (67 Saint-Michel) in Montréal, Canada. Three different scenarios are developed based on theory and practice to select stops to be incorporated in the new limited service. The time savings for each scenario are then evaluated as a range and a fourth scenario is developed. A limited-stop service is recommended based on selecting stops serving both directions of the route, major activity points and stop spacing. This study shows that implementing a limited-stop service would yield substantial time savings for both, the new limited service and the existing regular service running in parallel.  相似文献   

12.

In order to plan bus operations, it is necessary for transit planners to understand what factors may influence travelers’ choice of buses for travels within a city. The proposed method involves various scenarios of a hypothetical bus operation which was rated by a group of individuals.

Analysis of Covariance technique is employed to analyze people's sensitivities to their perceived levels of bus service characteristics. The technique involves:
  1. testing for the significant effects of varying levels of service characteristics upon people's intentions to use bus service, and

  2. assessing differences among various population segments in their sensitivity patterns towards bus service characteristics.

Results from the application of the technique to attitudinal data collected by the Orange County Transit District indicate that bus service characteristics do influence, independently and jointly, respondents’ stated intentions to use buses.

Sensitivity pattern differed across the five homogeneous segments identified in an earlier research based on socioeconomic characteristics.

One segment (an older, predominatly male population segment with higher home ownership level and lower income than the rest of the sample) was relatively insensitive to changes in bus fare and was influenced by changes in headway independent of changes in access distance. Another segment consisting of fewer registered voters with lower education also exhibited similar independent impact of headway and access distance.

The technique is especially useful in reducing a large number of proposed alternative bus systems to a smaller set for further planning considerations by specifying the ranges within which variation of service characteristic would cause substantial changes in the intended usage responses.  相似文献   

13.
Ridership estimation is a critical step in the planning of a new transit route or change in service. Very often, when a new transit route is introduced, the existing routes will be modified, vehicle capacities changed, or service headways adjusted. This has made ridership forecasts for the new, existing, and modified routes challenging. This paper proposes and demonstrates a procedure that forecasts the ridership of all transit routes along a corridor when a new bus rapid transit (BRT) service is introduced and existing regular bus services are adjusted. The procedure uses demographic data along the corridor, a recent origin–destination survey data, and new and existing transit service features as inputs. It consists of two stages of transit assignment. In the first stage, a transit assignment is performed with the existing transit demand on the proposed BRT and existing bus routes, so that adjustments to the existing bus services can be identified. This transit assignment is performed iteratively until there is no adjustment in transit services. In the second stage, the transit assignment is carried out with the new BRT and adjusted regular bus services, but incorporates a potential growth in ridership because of the new BRT service. The final outputs of the procedure are ridership for all routes and route segments, boarding and alighting volumes at all stops, and a stop‐by‐stop trip matrix. The proposed ridership estimation procedure is applicable to a new BRT route with and without competing regular bus routes and with BRT vehicles traveling in dedicated lanes or in mixed traffic. The application of the proposed procedure is demonstrated via a case study along the Alameda Corridor in El Paso, Texas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract

This paper presents an improved headway-based holding strategy integrating bus transit travel and dwelling time prediction. A support vector machine-based (SVM) model is developed to predict the baseline travel and dwell times of buses based on recent data. In order to reduce prediction errors, an adaptive algorithm is used together with real-time bus operational information and estimated baseline times from SVM models. The objective of the improved holding strategy is to minimize the total waiting times of passengers at the current stop and at successive stops. Considering the time-varying features of bus running, a ‘forgetting factor’ is introduced to weight the most recent data and reduce the disturbance from unexpected incidents. Finally, the improved holding strategy proposed in this study is illustrated using the microscopic simulation model Paramics and some conclusions are drawn.  相似文献   

15.
Intercity bus (ICB), deviated fixed route transit (DFRT) and demand responsive transit (DRT) are three major modes of rural public transportation. This paper focuses on the characteristics and motivations of DFRT and DRT riders, compared to non-riders, in Tennessee. A rural DFRT rider survey, a rural DRT rider survey and a rural (non-rider) resident survey were performed. It is found that DFRT and DRT riders have similar demographics to ICB riders. The most common trip purpose for DFRT and DRT passengers is medical care, which is different from ICB trips. Ninety percent of the riders have difficulty finding alternative transportation modes, suggesting they are captive riders, not choice riders. Regression results indicate that people choosing transit modes tend to have lower personal and household income, own fewer cars, to not be homeowners, and be of non-white race. Rural residents who receive more education are more likely to be open-minded to use rural transit.  相似文献   

16.
The improvement and expansion of public transport is an increasingly important solution to the high congestion costs and worsening environmental impacts of the car dominated transport systems seen in many cities today. The intelligent design of stop locations is one way to improve the quality of PT and thereby improve its ridership. Stop placement is a relatively complex task as it involves a trade-off between two competing goals; accessibility and operation; however this trade-off can be made explicit using an appropriate mathematical model. Many such models have been developed in the literature, however none consider the effects of uneven topography. Topography is an important but often neglected factor in the design of public transportation systems, with the potential to have a significant impact on the accessibility, operation and planning of a transit service. In this work a mathematical modelling approach to bus stop placement is developed which includes considerations of uneven topography in three ways; (1) Its effect on walking speed; (2) Its impact on the attractiveness of an access path to a transit service; and (3) Its effect on acceleration rates at stops. Because of the complexity of the model developed, a heuristic evolutionary algorithm’ is employed to approximate an optimal solution to the model. Finally, the model and solution method are applied to a case study in the Auckland CBD area in New Zealand.  相似文献   

17.
A model is developed for jointly optimizing the characteristics of a rail transit route and its associated feeder bus routes in an urban corridor. The corridor demand characteristics are specified with irregular discrete distributions which can realistically represent geographic variations. The total cost (supplier plus user cost) of the integrated bus and rail network is minimized with an efficient iterative method that successively substitutes variable values obtained through classical analytic optimization. The optimized variables include rail line length, rail station spacings, bus headways, bus stop spacings, and bus route spacing. Computer programs are designed for optimization and sensitivity analysis. The sensitivity of the transit service characteristics to various travel time and cost parameters is discussed. Numerical examples are presented for integrated transit systems in which the rail and bus schedules may be coordinated.  相似文献   

18.
Most previous works associated with transit signal priority merely focus on the optimization of signal timings, ignoring both bus speed and dwell time at bus stops. This paper presents a novel approach to optimize the holding time at bus stops, signal timings, and bus speed to provide priority to buses at isolated intersections. The objective of the proposed model is to minimize the weighted average vehicle delays of the intersection, which includes both bus delay and impact on nearby intersection traffic, ensuring that buses clear these intersections without being stopped by a red light. A set of formulations are developed to explicitly capture the interaction between bus speed, bus holding time, and transit priority signal timings. Experimental analysis is used to show that the proposed model has minimal negative impacts on general traffic and outperforms the no priority, signal priority only, and signal priority with holding control strategies (no bus speed adjustment) in terms of reducing average bus delays and stops. A sensitivity analysis further demonstrates the potential of the proposed approach to be applied to bus priority control systems in real‐time under different traffic demands, bus stop locations, and maximum speed limits. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Provision of accurate bus arrival information is vital to passengers for reducing their anxieties and waiting times at bus stop. This paper proposes models to predict bus arrival times at the same bus stop but with different routes. In the proposed models, bus running times of multiple routes are used for predicting the bus arrival time of each of these bus routes. Several methods, which include support vector machine (SVM), artificial neural network (ANN), k nearest neighbours algorithm (k-NN) and linear regression (LR), are adopted for the bus arrival time prediction. Observation surveys are conducted to collect bus running and arrival time data for validation of the proposed models. The results show that the proposed models are more accurate than the models based on the bus running times of single route. Moreover, it is found that the SVM model performs the best among the four proposed models for predicting the bus arrival times at bus stop with multiple routes.  相似文献   

20.
This paper analyzes and compares two different relative spatial position (RSP) designs in an integrated e-hailing/fixed-route transit system: a zone-based design that operates e-hailing vehicles within a zone, and a line-based design that operates e-hailing vehicles along a fixed-route transit line and with a stable headway. To conduct a meaningful comparison, the optimal design problems for both systems are formulated using a same analytical framework based on the continuous approximation approach. A comprehensive numerical experiment is performed to compare various cost components corresponding to the optimal designs, and a discrete-event simulation model is developed to validate the analysis. The analytical and simulation results agree with each other well, with a discrepancy in the total system cost less than 5% in most test scenarios. These results also suggest that the line-based system consistently outperforms the zone-based system in terms of both agency and user costs, for all scenarios tested. Compared to the zone-based design, the line-based design features a sparser fixed-route network (resulting in larger stop spacing) but a higher dispatching frequency. It is concluded that the higher efficiency of the line-based design is likely derived from the strategy of operating e-hailing vehicles with a more regular route/headway structure and allowing ride-sharing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号