首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Short-term prediction of travel time is one of the central topics in current transportation research and practice. Among the more successful travel time prediction approaches are neural networks and combined prediction models (a ‘committee’). However, both approaches have disadvantages. Usually many candidate neural networks are trained and the best performing one is selected. However, it is difficult and arbitrary to select the optimal network. In committee approaches a principled and mathematically sound framework to combine travel time predictions is lacking. This paper overcomes the drawbacks of both approaches by combining neural networks in a committee using Bayesian inference theory. An ‘evidence’ factor can be calculated for each model, which can be used as a stopping criterion during training, and as a tool to select and combine different neural networks. Along with higher prediction accuracy, this approach allows for accurate estimation of confidence intervals for the predictions. When comparing the committee predictions to single neural network predictions on the A12 motorway in the Netherlands it is concluded that the approach indeed leads to improved travel time prediction accuracy.  相似文献   

2.
Artificial neural networks have been used in a variety of prediction models because of their flexibility in modeling complicated systems. Using the automatic passenger counter data collected by New Jersey Transit, a model based on a neural network was developed to predict bus arrival times. Test runs showed that the predicted travel times generated by the models are reasonably close to the actual arrival times.  相似文献   

3.
With a particular emphasis on the end-to-end travel time prediction problem, this paper proposes an information-theoretic sensor location model that aims to minimize total travel time uncertainties from a set of point, point-to-point and probe sensors in a traffic network. Based on a Kalman filtering structure, the proposed measurement and uncertainty quantification models explicitly take into account several important sources of errors in the travel time estimation/prediction process, such as the uncertainty associated with prior travel time estimates, measurement errors and sampling errors. By considering only critical paths and limited time intervals, this paper selects a path travel time uncertainty criterion to construct a joint sensor location and travel time estimation/prediction framework with a unified modeling of both recurring and non-recurring traffic conditions. An analytical determinant maximization model and heuristic beam-search algorithm are used to find an effective lower bound and solve the combinatorial sensor selection problem. A number of illustrative examples and one case study are used to demonstrate the effectiveness of the proposed methodology.  相似文献   

4.
This paper is concerned with finding first-best tolls in static transportation networks with day-to-day variation in network capacity, as accounted for by changes in the volume-delay function. The key question in addressing this problem is that of information, namely, which agents have access to what information when making decisions. In this work, travelers are assumed to be either fully informed about network conditions before embarking on travel, or having no information except the probability distributions; likewise, the network manager (toll-setter) is either able to vary tolls in response to realized network conditions, or must apply the same tolls every day. Further, travelers’ preference for reliable travel is accounted for, representing risk aversion in the face of uncertainty. For each of the scenarios implied by combinations of these assumptions, we present methods to determine system-optimal link prices. A demonstration is provided, using the Sioux Falls test network, suggesting that attempts to incorporate uncertainty into nonresponsive tolls involve significantly higher prices.  相似文献   

5.
ABSTRACT

Identifying the spatial distribution of travel activities can help public transportation managers optimize the allocation of resources. In this paper, transit networks are constructed based on traffic flow data rather than network topologies. The PageRank algorithm and community detection method are combined to identify the spatial distribution of public transportation trips. The structural centrality and PageRank values are compared to identify hub stations; the community detection method is applied to reveal the community structures. A case study in Guangzhou, China is presented. It is found that the bus network has a community structure, significant weekday commuting and small-world characteristics. The metro network is tightly connected, highly loaded, and has no obvious community structure. Hub stations show distinct differences in terms of volume and weekend/weekday usage. The results imply that the proposed method can be used to identify the spatial distribution of urban public transportation and provide a new study perspective.  相似文献   

6.
The paper presents a unified macroscopic model-based approach to real-time freeway network traffic surveillance as well as a software tool RENAISSANCE that has been recently developed to implement this approach for field applications. RENAISSANCE is designed on the basis of stochastic macroscopic freeway network traffic flow modeling, extended Kalman filtering, and a number of traffic surveillance algorithms. Fed with a limited amount of real-time traffic measurements, RENAISSANCE enables a number of freeway network traffic surveillance tasks, including traffic state estimation and short-term traffic state prediction, travel time estimation and prediction, queue tail/head/length estimation and prediction, and incident alarm. The traffic state estimation and prediction lay the operating foundation of RENAISSANCE since RENAISSANCE bases the other traffic surveillance tasks on its traffic state estimation or prediction results. The paper first introduces the utilized stochastic macroscopic freeway network traffic flow model and a real-time traffic measurement model, upon which the complete dynamic system model of RENAISSANCE is established with special attention to the handling of some important model parameters. The algorithms for the various traffic surveillance tasks addressed are described along with the functional architecture of the tool. A simulation test was conducted via application of RENAISSANCE to a hypothetical freeway network example with a sparse detector configuration, and the testing results are presented in some detail. Final conclusions and future work are outlined.  相似文献   

7.
This paper develops an algorithm for optimally locating Automatic Vehicle Identification tag readers by maximizing the benefit that would accrue from measuring travel times on a transportation network. The problem is formulated as a quadratic 0–1 optimization problem where the objective function parameters represent benefit factors that capture the relevance of measuring travel times as reflected by the demand and travel time variability along specified trips. An optimization approach based on the Reformulation–Linearization Technique coupled with semidefinite programming concepts is designed to solve the formulated reader location problem. To illustrate the proposed methodology, we consider a transportation network that is comprised of freeway segments that might include merge, diverge, weaving, and bottleneck sections. In order to derive benefit factors for the various origin–destination pairs on this network, we employ a simulation package (INTEGRATION) in combination with a composite function, which estimates the travel time variability along a trip that is comprised of links that include any of the four identified sections. The simulation results are actually recorded as generic look-up tables that can be used for any such section for the purpose of computing the associated benefit factor coefficients. Computational results are presented using data pertaining to a freeway section in San Antonio, Texas, as well as synthetic test cases, to demonstrate the effectiveness of the proposed approach, and to study the sensitivity of the quality of the solution to variations in the number of available readers.  相似文献   

8.
9.
In densely populated and congested urban areas, the travel times in congested multi‐modal transport networks are generally varied and stochastic in practice. These stochastic travel times may be raised from day‐to‐day demand fluctuations and would affect travelers' route and mode choice behaviors according to their different expectations of on‐time arrival. In view of these, this paper presents a reliability‐based user equilibrium traffic assignment model for congested multi‐modal transport networks under demand uncertainty. The stochastic bus frequency due to the unstable travel time of bus route is explicitly considered. By the proposed model, travelers' route and mode choice behaviors are intensively explored. In addition, a stochastic state‐augmented multi‐modal transport network is adopted in this paper to effectively model probable transfers and non‐linear fare structures. A numerical example is given to illustrate the merits of the proposed model. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we proposed an evaluation method of exclusive bus lanes (EBLs) in a bi-modal degradable road network with car and bus transit modes. Link travel time with and without EBLs for two modes is analyzed with link stochastic degradation. Furthermore, route general travel costs are formulated with the uncertainty of link travel time for both modes and the uncertainty of waiting time at a bus stop and in-vehicle congestion costs for the bus mode. The uncertainty of bus waiting time is considered to be relevant to the degradation of the front links of the bus line. A bi-modal user equilibrium model incorporating travelers’ risk adverse behavior is proposed for evaluating EBLs. Finally, two numerical examples are used to illustrate how the road degradation level, travelers’ risk aversion level and the front link’s correlation level with the uncertainty of the bus waiting time affect the results of the user equilibrium model with and without EBLs and how the road degradation level affects the optimal EBLs setting scheme. A paradox of EBLs setting is also illustrated where adding one exclusive bus lane may decrease share of bus.  相似文献   

11.
Estimates of road speeds have become commonplace and central to route planning, but few systems in production provide information about the reliability of the prediction. Probabilistic forecasts of travel time capture reliability and can be used for risk-averse routing, for reporting travel time reliability to a user, or as a component of fleet vehicle decision-support systems. Many of these uses (such as those for mapping services like Bing or Google Maps) require predictions for routes in the road network, at arbitrary times; the highest-volume source of data for this purpose is GPS data from mobile phones. We introduce a method (TRIP) to predict the probability distribution of travel time on an arbitrary route in a road network at an arbitrary time, using GPS data from mobile phones or other probe vehicles. TRIP captures weekly cycles in congestion levels, gives informed predictions for parts of the road network with little data, and is computationally efficient, even for very large road networks and datasets. We apply TRIP to predict travel time on the road network of the Seattle metropolitan region, based on large volumes of GPS data from Windows phones. TRIP provides improved interval predictions (forecast ranges for travel time) relative to Microsoft’s engine for travel time prediction as used in Bing Maps. It also provides deterministic predictions that are as accurate as Bing Maps predictions, despite using fewer explanatory variables, and differing from the observed travel times by only 10.1% on average over 35,190 test trips. To our knowledge TRIP is the first method to provide accurate predictions of travel time reliability for complete, large-scale road networks.  相似文献   

12.
Effective prediction of bus arrival times is important to advanced traveler information systems (ATIS). Here a hybrid model, based on support vector machine (SVM) and Kalman filtering technique, is presented to predict bus arrival times. In the model, the SVM model predicts the baseline travel times on the basic of historical trips occurring data at given time‐of‐day, weather conditions, route segment, the travel times on the current segment, and the latest travel times on the predicted segment; the Kalman filtering‐based dynamic algorithm uses the latest bus arrival information, together with estimated baseline travel times, to predict arrival times at the next point. The predicted bus arrival times are examined by data of bus no. 7 in a satellite town of Dalian in China. Results show that the hybrid model proposed in this paper is feasible and applicable in bus arrival time forecasting area, and generally provides better performance than artificial neural network (ANN)–based methods. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Effective prediction of travel times is central to many advanced traveler information and transportation management systems. In this paper we propose a method to predict freeway travel times using a linear model in which the coefficients vary as smooth functions of the departure time. The method is straightforward to implement, computationally efficient and applicable to widely available freeway sensor data.We demonstrate the effectiveness of the proposed method by applying the method to two real-life loop detector data sets. The first data set––on I-880––is relatively small in scale, but very high in quality, containing information from probe vehicles and double loop detectors. On this data set the prediction error ranges from 5% for a trip leaving immediately to 10% for a trip leaving 30 min or more in the future. Having obtained encouraging results from the small data set, we move on to apply the method to a data set on a much larger spatial scale, from Caltrans District 12 in Los Angeles. On this data set, our errors range from about 8% at zero lag to 13% at a time lag of 30 min or more. We also investigate several extensions to the original method in the context of this larger data set.  相似文献   

14.
This paper presents a Bayesian inference-based dynamic linear model (DLM) to predict online short-term travel time on a freeway stretch. The proposed method considers the predicted freeway travel time as the sum of the median of historical travel times, time-varying random variations in travel time, and a model evolution error, where the median is employed to recognize the primary travel time pattern while the variation captures unexpected supply (i.e. capacity) reduction and demand fluctuations. Bayesian forecasting is a learning process that revises sequentially the state of a priori knowledge of travel time based on newly available information. The prediction result is a posterior travel time distribution that can be employed to generate a single-value (typically but not necessarily the mean) travel time as well as a confidence interval representing the uncertainty of travel time prediction. To better track travel time fluctuations during non-recurrent congestion due to unforeseen events (e.g., incidents, accidents, or bad weather), the DLM is integrated into an adaptive control framework that can automatically learn and adjust the system evolution noise level. The experiment results based on the real loop detector data of an I-66 segment in Northern Virginia suggest that the proposed method is able to provide accurate and reliable travel time prediction under both recurrent and non-recurrent traffic conditions.  相似文献   

15.
This paper quantifies the system-wide impacts of implementing a dynamic eco-routing system, considering various levels of market penetration and levels of congestion in downtown Cleveland and Columbus, Ohio, USA. The study concludes that eco-routing systems can reduce network-wide fuel consumption and emission levels in most cases; the fuel savings over the networks range between 3.3% and 9.3% when compared to typical travel time minimization routing strategies. We demonstrate that the fuel savings achieved through eco-routing systems are sensitive to the network configuration and level of market penetration of the eco-routing system. The results also demonstrate that an eco-routing system typically reduces vehicle travel distance but not necessarily travel time. We also demonstrate that the configuration of the transportation network is a significant factor in defining the benefits of eco-routing systems. Specifically, eco-routing systems appear to produce larger fuel savings on grid networks compared to freeway corridor networks. The study also demonstrates that different vehicle types produce similar trends with regard to eco-routing strategies. Finally, the system-wide benefits of eco-routing generally increase with an increase in the level of the market penetration of the system.  相似文献   

16.
An assumption that pervades the current transportation system reliability assessment literature is that probability distributions of the sources of uncertainty are known explicitly. However, this distribution may be unavailable (inaccurate) in reality as we may have no (insufficient) data to calibrate the distribution. In this paper we relax this assumption and present a new method to assess travel time reliability that is distribution-free in the sense that the methodology only requires that the first N moments (where N is a user-specified positive integer) of the travel time to be known and that the travel times reside in a set of bounded and known intervals. Because of our modeling approach, all sources of uncertainty are automatically accounted for, as long as they are statistically independent. Instead of deriving exact probabilities on travel times exceeding certain thresholds via computationally intensive methods, we develop semi-analytical probability inequalities to quickly (i.e. within a fraction of a second) obtain upper bounds on the desired probability. Numerical experiments suggest that the inclusion of higher order moments can potentially significantly improve the bounds. The case study also demonstrates that the derived bounds are nontrivial for a large range of travel time values.  相似文献   

17.
Online predictions of bus arrival times have the potential to reduce the uncertainty associated with bus operations. By better anticipating future conditions, online predictions can reduce perceived and actual passenger travel times as well as facilitate more proactive decision making by service providers. Even though considerable research efforts were devoted to the development of computationally expensive bus arrival prediction schemes, real-world real-time information (RTI) systems are typically based on very simple prediction rules. This paper narrows down the gap between the state-of-the-art and the state-of-the-practice in generating RTI for public transport systems by evaluating the added-value of schemes that integrate instantaneous data and dwell time predictions. The evaluation considers static information and a commonly deployed scheme as a benchmark. The RTI generation algorithms were applied and analyzed for a trunk bus network in Stockholm, Sweden. The schemes are assessed and compared based on their accuracy, reliability, robustness and potential waiting time savings. The impact of RTI on passengers waiting times are compared with those attained by service frequency and regularity improvements. A method which incorporates information on downstream travel conditions outperforms the commonly deployed scheme, leading to a 25% reduction in the mean absolute error. Furthermore, the incorporation of instantaneous travel times improves the prediction accuracy and reliability, and contributes to more robust predictions. The potential waiting time gains associated with the prediction scheme are equivalent to the gains expected when introducing a 60% increase in service frequency, and are not attainable by service regularity improvements.  相似文献   

18.
Currently most optimization methods for urban transport networks (i) are suited for networks with simplified dynamics that are far from real-sized networks or (ii) apply decentralized control, which is not appropriate for heterogeneously loaded networks or (iii) investigate good-quality solutions through micro-simulation models and scenario analysis, which make the problem intractable in real time. In principle, traffic management decisions for different sub-systems of a transport network (urban, freeway) are controlled by operational rules that are network specific and independent from one traffic authority to another. In this paper, the macroscopic traffic modeling and control of a large-scale mixed transportation network consisting of a freeway and an urban network is tackled. The urban network is partitioned into two regions, each one with a well-defined Macroscopic Fundamental Diagram (MFD), i.e. a unimodal and low-scatter relationship between region density and outflow. The freeway is regarded as one alternative commuting route which has one on-ramp and one off-ramp within each urban region. The urban and freeway flow dynamics are formulated with the tool of MFD and asymmetric cell transmission model, respectively. Perimeter controllers on the border of the urban regions operating to manipulate the perimeter interflow between the two regions, and controllers at the on-ramps for ramp metering are considered to control the flow distribution in the mixed network. The optimal traffic control problem is solved by a Model Predictive Control (MPC) approach in order to minimize total delay in the entire network. Several control policies with different levels of urban-freeway control coordination are introduced and tested to scrutinize the characteristics of the proposed controllers. Numerical results demonstrate how different levels of coordination improve the performance once compared with independent control for freeway and urban network. The approach presented in this paper can be extended to implement efficient real-world control strategies for large-scale mixed traffic networks.  相似文献   

19.
This paper investigates the use of constructive probabilistic neural network (CPNN) in freeway incident detection, including model development and adaptation. The CPNN was structured based on mixture Gaussian model and trained by a dynamic decay adjustment algorithm. The model was first trained and evaluated on a simulated incident database in Singapore. The adaptation of CPNN on the I-880 freeway in California was then investigated in both on-line and off-line environments. This paper also compares the performance of the CPNN model with a basic probabilistic neural network (BPNN) model. The results show that CPNN has three main advantages over BPNN: (1) CPNN has clustering ability and therefore could achieve similarly good incident-detection performance with a much smaller network size; (2) each Gaussian component in CPNN has its own smoothing parameter that can be obtained by the dynamic decay adjustment algorithm with a few epochs of training; and (3) the CPNN adaptation methods have the ability to prune obsolete Gaussian components and therefore the size of the network is always within control. CPNN has shown to have better application potentials than BPNN in this research.  相似文献   

20.
Travel time reliability is a fundamental factor in travel behavior. It represents the temporal uncertainty experienced by travelers in their movement between any two nodes in a network. The importance of the time reliability depends on the penalties incurred by the travelers. In road networks, travelers consider the existence of a trip travel time uncertainty in different choice situations (departure time, route, mode, and others). In this paper, a systematic review of the current state of research in travel time reliability, and more explicitly in the value of travel time reliability is presented. Moreover, a meta-analysis is performed in order to determine the reasons behind the discrepancy among the reliability estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号