首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new concept of subway station capacity (SSC) is defined according to the gathering and scattering process. A queuing network analytical model of station is created for calculating SSC, which is built by M/G/C/C state dependent queuing network and discrete time Markov chain (DTMC). Based on the definition and the analytical queuing network, a SSC optimization model is developed, whose objective function is to optimize SSC with a satisfactory rate of remaining passengers. Besides, a solution to the model is proposed integrating response surface methodology with iterative generalized expansion method (IGEM) and DTMC. A case study of Beijing Station in Beijing subway line 2 is implemented to verify the validity and practicability of the proposed methods by comparison with simulation model in different experiments. Finally, some sensitivity analysis results are provided to identify the nodes that have the greatest impact on SSC.  相似文献   

2.
Abstract

Six principles for the design of transport systems are described, including direct link, corridor, hub‐and‐spoke, connected hubs, static routes, and dynamic routes. The designs are theoretically discussed, defining the operational character of each design and their application in passenger, freight and rail freight transport. The theory is then applied to intermodal freight transport by comparing the terminology used in the paper with that in the scientific literature. The advantages of using a generic terminology over contextual ones are identified from the perspectives of researchers, commercial operators and policy‐makers.  相似文献   

3.
This paper proposes an enhanced measure of accessibility that explicitly considers circumstances in which the capacity of the transport infrastructure is limited. Under these circumstances, passengers may suffer longer waiting times, resulting in the delay or cancellation of trips. Without considering capacity constraints, the standard measure overestimates the accessibility contribution of transport infrastructure. We estimate the expected waiting time and the probability of forgoing trips based on the M/GB/1 type of queuing and discrete-event simulation, and formally incorporate the impacts of capacity constraints into a new measure: capacity constrained accessibility (CCA). To illustrate the differences between CCA and standard measures of accessibility, this paper estimates the accessibility change in the Beijing–Tianjin corridor due to the Beijing–Tianjin intercity high-speed railway (BTIHSR). We simulate and compare the CCA and standard measures in five queuing scenarios with varying demand patterns and service headway assumptions. The results show that (1) under low system loads condition, CCA is compatible with and absorbs the standard measure as a special case; (2) when demand increases and approaches capacity, CCA declines significantly; in two quasi-real scenarios, the standard measure overestimates the accessibility improvement by 14–30 % relative to the CCA; and (3) under the scenario with very high demand and an unreliable timetable, the CCA is almost reduced to the pre-BTIHSR level. Because the new CCA measure effectively incorporates the impact of capacity constraints, it is responsive to different arrival rules, service distributions, and system loads, and therefore provides a more realistic representation of accessibility change than the standard measure.  相似文献   

4.
We study how to estimate real time queue lengths at signalized intersections using intersection travel times collected from mobile traffic sensors. The estimation is based on the observation that critical pattern changes of intersection travel times or delays, such as the discontinuities (i.e., sudden and dramatic increases in travel times) and non-smoothness (i.e., changes of slopes of travel times), indicate signal timing or queue length changes. By detecting these critical points in intersection travel times or delays, the real time queue length can be re-constructed. We first introduce the concept of Queue Rear No-delay Arrival Time which is related to the non-smoothness of queuing delay patterns and queue length changes. We then show how measured intersection travel times from mobile sensors can be processed to generate sample vehicle queuing delays. Under the uniform arrival assumption, the queuing delays reduce linearly within a cycle. The delay pattern can be estimated by a linear fitting method using sample queuing delays. Queue Rear No-delay Arrival Time can then be obtained from the delay pattern, and be used to estimate the maximum and minimum queue lengths of a cycle, based on which the real-time queue length curve can also be constructed. The model and algorithm are tested in a field experiment and in simulation.  相似文献   

5.
A real‐life situation in which a trucker has to collect a cargo of similar size from n different customers spread out in a given region and to deliver them to n locations spread out in another far‐away region has been formulated as a route‐design problem for a single vehicle. The minimal total time of loading, shipping and unloading is considered for different reshuffling methods, and the optimal method is determined. A solution procedure by enumeration is suggested to solve an actual small size problem, and an illustration is provided.  相似文献   

6.
This paper presents a system dynamics approach to simultaneous land use/transportation system performance modeling. A model is designed based on the causality functions and feedback loop structure between a large number of physical, socioeconomic, and policy variables. The model system consists of 7 sub‐models: population, migration of population, household, job growth‐employment‐land availability, housing development, travel demand, and traffic congestion level. The model is formulated in DYNAMO simulation language, and tested on a data set from Montgomery County, MD. In Part I: Methodology, the overall approach and the structure of the model system is discussed and the causal‐loop diagrams and major equations are presented. In Part II: Application, the model is calibrated and tested with data from Montgomery County, MD. Least square method and overall system behavior are used to estimate the model parameters. The model is fitted with the 1970–80 data and validated with the 1980–1990 data. Robustness and sensitivities with respect to input parameters such as birth rate or regional economy growth are analyzed. The model performance as a policy analysis tool is also examined by predicting the year by year impacts of highway capacity expansion on land use and transportation system performance. While this is a first attempt in using dynamic system simulation modeling in simultaneous treatment of land use and transportation system interactions, and model development and application are limited to some extent due to data availability, the results clearly indicate that the proposed method is a promising approach in dealing with complex urban land use/transportation modeling  相似文献   

7.
This paper presents a system dynamics approach to simultaneous land use/transportation system performance modeling. A model is designed based on the causality functions and feedback loop structure between a large number of physical, socioeconomic, and policy variables. The model consists of 7 sub‐models: population, migration of population, household, job growth‐employment‐land availability, housing development, travel demand, and traffic congestion level. The model is formulated in DYNAMO simulation language, and tested on a data set from Montgomery County, MD. In Part I: Methodology, the overall approach and the structure of the model system is discussed and the causal‐loop diagrams and major equations are presented. In Part II: Application, the model is calibrated and tested with data from Montgomery County, MD. Least square method and overall system behavior are used to estimate the model parameters. The model is fitted with the 1970–80 data and validated with the 1980–1990 data. Robustness and sensitivities with respect to input parameters such as birth rate or regional economy growth are analyzed. The model performance as a policy analysis tool is examined by predicting the year by year impacts of highway capacity expansion on land use and transportation system performance. While this is a first attempt in using dynamic system simulation modeling in simultaneous treatment of land use and transportation system interactions, and model development and application are limited due to data availability, the results indicate that the proposed method is a promising approach in dealing with complex urban land use/transportation modeling.  相似文献   

8.
An analytical model that determines the optimal location and length of rail line along a crosstown transportation corridor with the objective of minimizing the total transportation cost is presented. A general, many-to-many passenger demand pattern is considered. The objective function, which includes the rail and bus riding costs, rail and bus operating costs, rail fleet costs and rail line costs, is minimized by using the classical optimization method with the aid of a computer program developed for the model. The model is applied to the Northwest-South transportation corridor in Calgary, Alberta, and the sensitivity of the optimal rail line location and length to the unit cost and demand parameters at their reasonable ranges is tested. It is found that although the total passenger demand, unit rail line cost, and unit bus operating cost have greater influence than the unit bus and rail riding costs, and unit rail fleet and operating costs, the optimal line length is generally insensitive to all these parameters. It is also found that the length of the existing LRT line in the corridor is comparable to the optimal line length obtained from the model, but the existing line should be extended further south in order to meet the heavier demand in that direction optimally.  相似文献   

9.
Because transportation systems involve massive complex human activities, there exist substantial unpredictable uncertainties of the traffic demands. This paper aims at presenting an H control method for transportation network that can enhance the tolerance of the system due to these uncertainties. In particular, the store‐and‐forward approach is applied to model the system into a linear form. Then, a detailed controllability analysis shows that the system is not completely controllable by taking the constraints on the green times into account. This makes difficult to apply directly the H method. To overcome this difficulty, this paper isolates the fully controllable part of the transportation system, and the problem of disturbance attenuation is then solved by means of a convex optimization with linear matrix inequality. Finally, the simulation of a large‐scale hypothetical network is carried out to illustrate the results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Control strategies have been widely used in the literature to counteract the effects of bus bunching in passenger‘s waiting times and its variability. These strategies have only been studied for the case of a single bus line in a corridor. However, in many real cases this assumption does not hold. Indeed, there are many transit corridors with multiple bus lines interacting, and this interaction affects the efficiency of the implemented control mechanism.This work develops an optimization model capable of executing a control scheme based on holding strategy for a corridor with multiple bus lines.We analyzed the benefits in the level of service of the public transport system when considering a central operator who wants to maximize the level of service for users of all the bus lines, versus scenarios where each bus line operates independently. A simulation was carried out considering two medium frequency bus lines that serve a set of stops and where these two bus lines coexist in a given subset of stops. In the simulation we compared the existence of a central operator, using the optimization model we developed, against the independent operation of each line.In the simulations the central operator showed a greater reduction in the overall waiting time of the passengers of 55% compared to a no control scenario. It also provided a balanced load of the buses along the corridor, and a lower variability of the bus headways in the subset of stops where the lines coexist, thus obtaining better reliability for all types of passengers present in the public transport system.  相似文献   

11.
The origin‐based algorithm is embedded into the augmented Lagrangian method for the link‐capacitated traffic assignment problem. In order to solve the “nonexistence” problem due to the second partial derivatives of the augmented Lagrangian function at some specific points, the approximate expressions of the second partial derivatives are amended in the origin‐based algorithm. The graph of last common nodes is developed on the basis of the restricted single‐origin network. A method is proposed for finding n–1 last common nodes of the restricted single‐origin network, resulting in computational complexity of O(n2) in finding last common nodes. Numerical analysis on the Sioux Falls network and Chicago Sketch network demonstrated the effectiveness and characteristics of the proposed algorithm. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
From a capacity perspective, efficient utilization of a railway corridor has two main objectives; avoidance of schedule conflicts, and finding a proper balance between capacity utilization and level of service (LOS). There are several timetable tools and commercial rail simulation packages available to assist in reaching these objectives, but few of them offer both automatic train conflict resolution and automatic timetable management features for the different types of corridor configurations. This research presents a new rescheduling model to address some of the current limitations. The multi-objective linear programming (LP) model is called “Hybrid Optimization of Train Schedules” (HOTS), and it works together with commercial rail simulation tools to improve capacity utilization or LOS metrics. The HOTS model uses both conflict resolution and timetable compression techniques and is applicable to single-, double-, and multiple-track corridors (N-track networks), using both directional and bi-directional operations. This paper presents the approach, formulation and data requirements for the HOTS model. Single and multi-track case studies test and demonstrate the model’s train conflict resolution and timetable compression capabilities, and the model’s results are validated by using RailSys simulation package. The HOTS model performs well in each tested scenario, providing comparable results (either improved or similar) to the commercial packages.  相似文献   

13.
Summary

This paper has reported on a study of relative opportunity—not absolute opportunity. Minimum absolute standards for mobility or accessibility are difficult to justify. Some additional study into the development and application of absolute mobility standards may be warranted.

The application of the mobility evaluation model has primarily focused upon a corridor line‐haul system. Conclusions suggest that such a system will not markedly improve existing transit mobility levels in either the peak hour or the off‐peak. The experimental work has verified this conclusion, and more importantly, it has detailed quantitatively the exact levels and spatial distribution of mobility improvements. However, this study does not include a comprehensive analysis of all methods of mobility enhancement, nor does it undertake a comparison of alternative means of mobility improvement. Certainly other methods to improve access to opportunities should be explored before policy considerations are finalized. These methods include other transit solutions, land use alternatives, socio‐economic policies, and other‐mode transportation alternatives. The accessibility technique and mobility indices approach appears to have general applicability in the analysis of optimal strategies for system evaluation.

Of interest is an examination of alternative feeder transit systems to the corridor line. Additional research with the model might point out the maximum mobility effects expected through improved collector service in the suburbs, with corridor line‐haul to the CBD.

The indices are also readily available for a comparison of mobility patterns for different urban areas. Application of the program to transit and socio‐economic data for a set of cities would yield an indication of the relative mobility levels provided. Such data might be considered as an evaluation criterion for future transit funding by federal officials.

In addition, the model is currently being considered by UMTA as a tool to aid in the evaluation of the equitable distribution of transit system benefits as defined in Title VI of the Civil Rights Act of 1964.25 The mobility output would serve as an indicator of the levels‐of‐service provided to certain disadvantaged urban groups. For this application the computer model is being altered to achieve compatability with the Transportation Planning System (UTPS) computer model package developed by UMTA.  相似文献   

14.
为解决城市轨道交通车站售票能力冗余导致城市电力资源及地铁公司运营成本闲置的问题,分析普通车站日常客流分布,综合考虑地铁车站售票设备成本和乘客的时间成本因素,建立地铁车站售票设备开启数量优化模型,同时通过排队论和Lingo软件进行计算,获得最优化的地铁车站售票设备开启数量。以郑州地铁农业南路站的日常客流为例,应用地铁车站售票设备开启数量优化模型,计算得到农业南路站售票设备优化方案,通过优化方案进行节能成果分析证明,该方案可有效节约城市电力资源及地铁公司运营成本。  相似文献   

15.
The article presents an element increment method that is developed by current time increment method of train traction calculation. A railway route was divided, breaking it down into elements of different lengths. A whole train movement simulation curve (vt curve and vS curve) was formed by splitting the joints of each of the elements' individual simulation curves. During this process, the train velocity variance was calculated by time increment method with assistance of polynomial fitting technology. Additionally, a step‐by‐step method with iteration was used to combine each element and makes the whole simulation curve continuous. Meanwhile, the energy‐saving issue was also taken into account to optimize the simulation curve. This article gives more details about the modeling by providing an example of a railway route based on moving block control. The element increment method is a more effective way to calculate train traction of high‐speed railway, and it is an alternative method to train movement simulation for aiding macroscopic railway transportation planning. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract

Although per‐capita car trip distance (measured in passenger‐km) and car driving distance (measured in vehicle‐km) in the UK have kept increasing, their growth rates slowed considerably in the 1990s when compared with the 1970s and 1980s. The paper investigates the main driving forces behind the changes in car trip and car driving distances, and it examines the determining factors for the slow down of growth in the 1990s on the basis of the analysis of data from the National Travel Survey (1975/76, 1989/91, 1992/94, 1995/97 and 1999/2001). In particular, it emphasizes the significance of changes in car ownership levels as a key driving force and attempts to separate this ‘car ownership effect’ from other effects. The log‐mean Divisia index decomposition method is applied to measure the relative contribution of each effect. Separate analyses are undertaken according to trip purpose. Other underlying causes, such as changes in fuel price and road capacity, are also examined.  相似文献   

17.
18.
Previous methods to calculate the minimum number of traffic micro‐simulation runs do not consider multiple measures of performance simultaneously at an overall confidence level, which can lead to unreliable simulation outputs. This paper describes new methodologies for calculating the minimum number of traffic micro‐simulation runs for multivariate estimates at an overall confidence level. Simultaneous confidence intervals obtained from multiple comparisons in statistical theory such as the Bonferroni inequality and simultaneous confidence interval method are used to estimate multiple measures of performance with allowable errors at an overall confidence level. Measures of performance can be means and standard deviations. Results of numerical analysis based on an example corridor suggest that the proposed methods provide improved means of assessing statistical accuracy of multiple measures of performance. Results also indicate that the minimum number of runs is influenced by not only the sample size issue but also the complexity of the traffic system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Yang  Qiang  Chan  Catherine Y. P.  Chin  Kwai-sang  Li  Yan-lai 《Transportation》2021,48(5):2627-2662

This study aims to suggest a three-phased methodological framework based on the operational approach of quality function deployment (QFD) to improve the service quality and passenger satisfaction with China’s high-speed rail (HSR) by identifying the key passenger needs with regard the HSR seats. For the first phase, the collection of the voice of the customers/passengers (VOC), the processing of the collected VOC into need items and further into passenger needs of QFD would be explained in terms of knowledge management. For the second phase, a reference comparison-based fuzzy best–worst method is developed for determining the relative importance of passenger needs, with a particular purpose of coping with the uncertainty and ambiguity associated with qualitative assessment of respondents. For the third phase, the importance-performance analysis is performed to determine the improvement priorities for meeting passenger needs. Findings showed that Body-friendly seat structure and Reasonable layout of the seat are the two most important needs demanded by the passengers of second-class cabins, with the former being the top priority. The current study provides useful references for service operators of HSR to formulate development strategies for improving the seat comfortability, which subsequently contributes to improving HSR’s service quality and passenger satisfaction. Moreover, the proposed methodological framework for identifying the important passenger needs can be appropriately adjusted and expanded to similar transportation infrastructures and facilities.

  相似文献   

20.
船闸廊道是混凝土裂缝易发部位,文章依托施桥三线船闸工程,采用大型有限元分析软件ANSYS对施工期廊道进行仿真分析,通过对施工期温度场、应力场的仿真计算和结构优化研究,探讨了廊道温度场、应力场分布规律及随时间的变化规律,为施工期廊道混凝土裂缝的控制提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号