首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 610 毫秒
1.
Fare evasion is a problem in many public transport systems around the world and policies to reduce it are generally aimed at improving control and increasing fines. We use an econometric approach to attempt explaining the high levels of evasion in Santiago, Chile, and guide public policy formulation to reduce this problem. In particular, a negative binomial count regression model allowed us to find that fare evasion rates on buses increase as: (i) more people board (or alight) at a given bus door, (ii) more passengers board by a rear door, (iii) buses have higher occupancy levels (and more doors) and (iv) passengers experience longer headways. By controlling these variables (ceteris paribus), results indicate that evasion is greater during the afternoon and evening, but it is not clear that it is higher during peak hours. Regarding socioeconomic variables, we found that fare evasion at bus stops located in higher income areas (municipalities) is significantly lower than in more deprived areas. Finally, based on our results we identified five main methods to address evasion as alternatives to more dedicated fine enforcement or increased inspection; (i) increasing the bus fleet, (ii) improving the bus headway regularity, (iii) implementing off-board payment stations, (iv) changing the payment system on board and (v) changing the bus design (number of doors or capacity). Our model provides a powerful tool to predict the reduction of fare evasion due to the implementation of some of these five operational strategies, and can be applied to other bus public transport systems.  相似文献   

2.
Buses will remain the backbone of public transport systems for some time to come because of their lower cost and higher flexibility in relation to rail transport. However, buses are perceived as being an inferior mode of public transport and do not offer as much carrying capacity as rail transport. Following the Curitiba model, this paper looks at the potential for transferring some of the key advantages of rail transport to bus operations. This involves transforming bus stops into enclosed stations, with ticket purchase and/or checking in the station and at‐grade access to vehicles. It also involves the extensive use of bus lanes. The potential contribution of transport telematics is looked at, in particular the use of smartcards for payment in a closed fare system. The potential role of the Curitiba model for China is assessed in the context of toll road construction.  相似文献   

3.
A smart design of transport systems involves efficient use and allocation of the limited urban road capacity in the multimodal environment. This paper intends to understand the system-wide effect of dividing the road space to the private and public transport modes and how the public transport service provider responds to the space changes. To this end, the bimodal dynamic user equilibrium is formulated for separated road space. The Macroscopic Fundamental Diagram (MFD) model is employed to depict the dynamics of the automobile traffic for its state-dependent feature, its inclusion of hypercongestion, and its advantage of capturing network topology. The delay of a bus trip depends on the running speed which is in turn affected by bus lane capacity and ridership. Within the proposed bimodal framework, the steady-state equilibrium traffic characteristics and the optimal bus fare and service frequency are analytically derived. The counter-intuitive properties of traffic condition, modal split, and behavior of bus operator in the hypercongestion are identified. To understand the interaction between the transport authority (for system benefit maximization) and the bus operator (for its own benefit maximization), we examine how the bus operator responds to space changes and how the system benefit is influenced with the road space allocation. With responsive bus service, the condition, under which expanding bus lane capacity is beneficial to the system as a whole, has been analytically established. Then the model is applied to the dynamic framework where the space allocation changes with varying demand and demand-responsive bus service. We compare the optimal bus services under different economic objectives, evaluate the system performance of the bimodal network, and explore the dynamic space allocation strategy for the sake of social welfare maximization.  相似文献   

4.
Although real-time Automatic Vehicle Location (AVL) data is being utilised successfully in the UK, little notice has been given to the benefits of historical (non-real-time) AVL data. This paper illustrates how historical AVL data can be used to identify segments of a bus route which would benefit most from bus priority measures and to improve scheduling by highlighting locations at which the greatest deviation from schedule occurs. A new methodology which uses historical AVL data and on-bus passenger counts to calculate the passenger arrival rate at stops along a bus route has been used to estimate annual patronage and the speed of buses as they move between stops. Estimating the patronage at stops using AVL data is more cost-effective than conventional methods (such as surveys at stops which require much more manpower) but retains the benefits of accuracy and stop-specific estimates of annual patronage. The passenger arrival rate can then be used to calculate how long buses spend at stops. If the time buses spend at stops is removed from the total time it takes the bus to traverse a link, the remaining amount of time can be assumed to be the time the bus spends moving and hence the moving speed of the bus can be obtained. It was found that estimation of patronage and the speed of buses as they move between stops using AVL data produced results which were comparable with those obtained by other methods. However the main point to note is that this new method of estimating patronage has the potential to provide a larger and superior data set than is otherwise available, at very low cost.  相似文献   

5.
Bus rapid transit systems: a comparative assessment   总被引:1,自引:0,他引:1  
There is renewed interest in many developing and developed countries in finding ways of providing efficient and effective public transport that does not come with a high price tag. An increasing number of nations are asking the question—what type of public transport system can deliver value for money? Although light rail has often been promoted as a popular ‘solution’, there has been progressively emerging an attractive alternative in the form of bus rapid transit (BRT). BRT is a system operating on its own right-of-way either as a full BRT with high quality interchanges, integrated smart card fare payment and efficient throughput of passengers alighting and boarding at bus stations; or as a system with some amount of dedicated right-of-way (light BRT) and lesser integration of service and fares. The notion that buses essentially operate in a constrained service environment under a mixed traffic regime and that trains have privileged dedicated right-of-way, is no longer the only sustainable and valid proposition. This paper evaluates the status of 44 BRT systems in operation throughout the world as a way of identifying the capability of moving substantial numbers of passengers, using infrastructure whose costs overall and per kilometre are extremely attractive. When ongoing lifecycle costs (operations and maintenance) are taken into account, the costs of providing high capacity integrated BRT systems are an attractive option in many contexts.  相似文献   

6.
This study investigates the impacts of transit improvement strategies on bus emissions along a busy corridor in Montreal, Canada. The local transit provider, Société de Transport de Montréal, has implemented a number of strategies which include the use of smart cards, limited-stop (express bus) service, and reserved bus lanes along this corridor. Using data collected on-board for instantaneous speeds and stop-level ridership, we estimated bus emissions of greenhouse gases and other pollutants at three levels: road segment, bus-stop, and per passenger. A regression of segment-level emissions against a number of explanatory variables reveals that reserved bus lanes and express bus service reduce emissions significantly. On the other hand, smart card use reduces idling emissions compared to other fare payment methods. Our findings are of most relevance for transit planners who are seeking to implement different strategies to reduce emissions and improve transit performance.  相似文献   

7.
Transit agencies implement many strategies in order to provide an attractive transportation service. This article aims to evaluate the impacts of implementing a combination of strategies, designed to improve the bus transit service, on running time and passenger satisfaction. These strategies include using smart card fare collection, introducing limited-stop bus service, implementing reserved bus lanes, using articulated buses, and implementing transit signal priority (TSP). This study uses stop-level data collected from the Société de transport de Montréal (STM)’s automatic vehicle location (AVL) and automatic passenger count (APC) systems, in Montréal, Canada. The combination of these strategies has lead to a 10.5% decline in running time along the limited stop service compared to the regular service. The regular route running time has increased by 1% on average compared to the initial time period. The study also shows that riders are generally satisfied with the service improvements. They tend to overestimate the savings associated with the implementation of this combination of strategies by 3.5-6.0 min and by 2.5-4.1 min for both the regular route and the limited stop service, respectively. This study helps transit planners and policy makers to better understand the effects of implementing a combination of strategies to improve running time and passenger’s perception of these changes in service.  相似文献   

8.
This paper proposes a new dynamic bus control strategy aimed at reducing the negative effects of time-headway variations on route performance, based on real-time bus tracking data at stops. In routes with high demand, any delay of a single vehicle ends up causing an unstable motion of buses and producing the bus bunching phenomena. This strategy controls the cruising speed of buses and considers the extension of the green phase of traffic lights at intersections, when a bus is significantly delayed. The performance of this strategy will be compared to the current static operation technique based on the provision of slack times at holding points. An operational model is presented in order to estimate the effects of each controlling strategy, taking into account the vehicle capacity constraint. Control strategies are assessed in terms of passenger total travel time, operating cost as well as on the coefficient of headway variation. The effects of controlling strategies are tested in an idealized bus route under different operational settings and in the bus route of highest demand in Barcelona by simulation. The results show that the proposed dynamic controlling strategy reduces total system cost (user and agency) by 15–40% as well as the coefficient of headway variation 53–78% regarding the uncontrolled case, providing a bus performance similar to the expected when time disturbance is not presented.  相似文献   

9.
Most previous works associated with transit signal priority merely focus on the optimization of signal timings, ignoring both bus speed and dwell time at bus stops. This paper presents a novel approach to optimize the holding time at bus stops, signal timings, and bus speed to provide priority to buses at isolated intersections. The objective of the proposed model is to minimize the weighted average vehicle delays of the intersection, which includes both bus delay and impact on nearby intersection traffic, ensuring that buses clear these intersections without being stopped by a red light. A set of formulations are developed to explicitly capture the interaction between bus speed, bus holding time, and transit priority signal timings. Experimental analysis is used to show that the proposed model has minimal negative impacts on general traffic and outperforms the no priority, signal priority only, and signal priority with holding control strategies (no bus speed adjustment) in terms of reducing average bus delays and stops. A sensitivity analysis further demonstrates the potential of the proposed approach to be applied to bus priority control systems in real‐time under different traffic demands, bus stop locations, and maximum speed limits. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Charging infrastructure requirements are being largely debated in the context of urban energy planning for transport electrification. As electric vehicles are gaining momentum, the issue of locating and securing the availability, efficiency and effectiveness of charging infrastructure becomes a complex question that needs to be addressed. This paper presents the structure and application of a model developed for optimizing the distribution of charging infrastructure for electric buses in the urban context, and tests the model for the bus network of Stockholm. The major public bus transport hubs connecting to the train and subway system show the highest concentration of locations chosen by the model for charging station installation. The costs estimated are within an expected range when comparing to the annual bus public transport costs in Stockholm. The model could be adapted for various urban contexts to promptly assist in the transition to fossil-free bus transport. The total costs for the operation of a partially electrified bus system in both optimization cases considered (cost and energy) differ only marginally from the costs for a 100% biodiesel system. This indicates that lower fuel costs for electric buses can balance the high investment costs incurred in building charging infrastructure, while achieving a reduction of up to 51% in emissions and up to 34% in energy use in the bus fleet.  相似文献   

11.
Fixed-rail metro (or ‘subway’) infrastructure is generally unable to provide access to all parts of the city grid. Consequently, feeder bus lines are an integral component of urban mass transit systems. While passengers prefer a seamless transfer between these two distinct transportation services, each service’s operations are subject to a different set of factors that contribute to metro-bus transfer delay. Previous attempts to understand transfer delay were limited by the availability of tools to measure the time and cost associated with passengers’ transfer experience. This paper uses data from smart card systems, an emerging technology that automatically collects passenger trip data, to understand transfer delay. The primary objective of this study is to use smart card data to derive a reproducible methodology that isolates high priority transfer points between the metro system and its feeder-bus systems. The paper outlines a methodology to identify transfer transactions in the smart card dataset, estimate bus headways without the aid of geographic location information, estimate three components of the total transfer time (walking time, waiting time, and delay time), and isolate high-priority transfer pairs. The paper uses smart card data from Nanjing, China as a case study. The results isolate eight high priority metro-bus transfer pairs in the Nanjing metro system and finally, offers several targeted measures to improve transfer efficiency.  相似文献   

12.
This paper models part of a public transport network (PTN), specifically, a bus route, as a small-size multi-agent system (MAS). The proposed approach is applied to a case study considering a ‘real world’ bus line within the PTN in Auckland, New Zealand. The MAS-based analysis uses modeling and simulation to examine the characteristics of the observed system – autonomous agents interacting with one another – under different scenarios, considering bus capacity and frequency of service for existing and projected public transport (PT) demand. A simulation model of a bus route is developed, calibrated and validated. Several results are attained, such as when the PT passenger load is not close to bus capacity, this load has no effect on average passenger waiting time at bus stops. The model proposed can be useful to practitioners as a tool to model the interaction between buses and other agents.  相似文献   

13.
This paper investigates the choice of fare and service frequency by urban mass transit agencies. A more frequent service is costly to provide but is valued by riders due to shorter waiting times at stops, and faster operating speeds on less crowding vehicles. Empirical analyses in the 1980s found that service frequencies were too high in most of the cities studied. For a given budget constraint, social welfare could be improved by reducing service frequencies and using the money saved to lower fares. The cross-sectional nature of these analyses meant that researchers were unable to address the question of when the oversupply occurred. This paper seeks to answer that question by conducting a time-series analysis of the bus operations of the Chicago Transit Authority from 1953 to 2005. The paper finds that it has always been the case that too much service frequency was provided at too high a fare. The imbalance between fares and service frequency became larger in the 1970s when the introduction of operating subsidies coincided with an increase in the unit cost of service provision.  相似文献   

14.
A mathematical model is developed to optimize social and fiscal sustainable operation of a feeder bus system considering realistic network and heterogeneous demand. The objective total profit is a nonlinear, mixed integer function, which is maximized by optimizing the number of stops, headway, and fare. The stops are located which maximize the ridership. The demand elasticity for the bus service is dependent on passengers' access distance, wait time, in‐vehicle time, and fare. An optimization algorithm is developed to search for the optimal solution that maximizes the profit. The modeling approach is applied to planning a bus transit system within Woodbridge, New Jersey. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The effects of high passenger density at bus stops, at rail stations, inside buses and trains are diverse. This paper examines the multiple dimensions of passenger crowding related to public transport demand, supply and operations, including effects on operating speed, waiting time, travel time reliability, passengers’ wellbeing, valuation of waiting and in-vehicle time savings, route and bus choice, and optimal levels of frequency, vehicle size and fare. Secondly, crowding externalities are estimated for rail and bus services in Sydney, in order to show the impact of crowding on the estimated value of in-vehicle time savings and demand prediction. Using Multinomial Logit (MNL) and Error Components (EC) models, we show that alternative assumptions concerning the threshold load factor that triggers a crowding externality effect do have an influence on the value of travel time (VTTS) for low occupancy levels (all passengers sitting); however, for high occupancy levels, alternative crowding models estimate similar VTTS. Importantly, if demand for a public transport service is estimated without explicit consideration of crowding as a source of disutility for passengers, demand will be overestimated if the service is designed to have a number of standees beyond a threshold, as analytically shown using a MNL choice model. More research is needed to explore if these findings hold with more complex choice models and in other contexts.  相似文献   

16.
This study investigates the cost competitiveness of different types of charging infrastructure, including charging stations, charging lanes (via charging-while-driving technologies) and battery swapping stations, in support of an electric public transit system. To this end, we first establish mathematical models to investigate the optimal deployment of various charging facilities along the transit line and determine the optimal size of the electric bus fleet, as well as their batteries, to minimize total infrastructure and fleet costs while guaranteeing service frequency and satisfying the charging needs of the transit system. We then conduct an empirical analysis utilizing available real-world data. The results suggest that: (1) the service frequency, circulation length, and operating speed of a transit system may have a great impact on the cost competitiveness of different charging infrastructure; (2) charging lanes enabled by currently available inductive wireless charging technology are cost competitive for most of the existing bus rapid transit corridors; (3) swapping stations can yield a lower total cost than charging lanes and charging stations for transit systems with high operating speed and low service frequency; (4) charging stations are cost competitive only for transit systems with very low service frequency and short circulation; and (5) the key to making charging lanes more competitive for transit systems with low service frequency and high operating speed is to reduce their unit-length construction cost or enhance their charging power.  相似文献   

17.
Seoul city authority implemented an innovative bus transport reform (BTR) in July 2004. This paper evaluates the performance of that reform. To this end, the paper includes a discussion of the features of the reform, an explanation of the fields and the contents of the reform, and an assessment of the performance of the reform formulated by comparing pertinent circumstances in place before and after its inception. The performance of eight fields: bus routes, bus fares, bus management, bus operation, a new smart card, a median bus lane system, vehicles and stops, and the promotion of the BTR, are measured, as are the performances of four groups influenced by the BTR. Those groups are bus passengers, bus operators, transport regulators, and members of the wider civil community. The results indicate a readily apparent decrease in traffic density in Seoul after the introduction of the reform, and it would appear that the increase in the number of public transport users bears an inverse relationship with the decrease in the transport share of private cars.  相似文献   

18.
Abstract

A model is proposed to calculate the overall operating and delay times spent at bus stops due to passenger boarding and alighting and the time lost to queuing caused by bus stop saturation. A formula for line demand at each stop and the interaction between the buses themselves is proposed and applied to different bus stops depending on the number of available berths. The application of this model has quantified significant operational delays suffered by users and operator due to consecutive bus arrival at stops, even with flows below bus stop capacity.  相似文献   

19.
Transit fares are an effective tool for demand management. Transit agencies can raise revenue or relieve overcrowding via fare increases, but they are always confronted with the possibility of heavy ridership losses. Therefore, the outcome of fare changes should be evaluated before implementation. In this work, a methodology was formulated based on elasticity and exhaustive transit card data, and a network approach was proposed to assess the influence of distance-based fare increases on ridership and revenue. The approach was applied to a fare change plan for Beijing Metro. The price elasticities of demand for Beijing Metro at various fare levels and trip distances were tabulated from a stated preference survey. Trip data recorded by an automatic fare collection system was used alongside the topology of the Beijing Metro system to calculate the shortest path lengths between all station pairs, the origin–destination matrix, and trip lengths. Finally, three fare increase alternatives (high, medium, and low) were evaluated in terms of their impact on ridership and revenue. The results demonstrated that smart card data have great potential with regard to fare change evaluation. According to smart card data for a large transit network, the statistical frequency of trip lengths is more highly concentrated than that of the shortest path length. Moreover, the majority of the total trips have a length of around 15 km, and these are the most sensitive to fare increases. Specific attention should be paid to this characteristic when developing fare change plans to manage demand or raise revenue.  相似文献   

20.
Recent experience with the design of bus services in Santiago, Chile, seems to confirm Jansson's (1980) assertion regarding observed planned bus frequency and size being too low and too large, respectively. We offer an explanation based upon the relation between cost coverage, pricing and optimal design variables. We recall that average social cost decreases with patronage, which generates an optimal monetary fare below the average operators' cost, inducing an optimal subsidy. Then we compare optimal frequency and bus size—those that minimize total social costs—with those that minimize operators' costs only. We show that an active constraint on operators' expenses is equivalent to diminish the value of users' time in the optimal design problem. Inserting this property back in the optimal pricing scheme, we conclude that a self-financial constraint, if active, always provokes an inferior solution, a smaller frequency and, under some circumstances, larger than optimal buses.
Sergio R. Jara-DíazEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号