首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study proposes a potential-based dynamic pedestrian flow assignment model to optimize the evacuation time needed for all pedestrians to leave an indoor or outdoor area with internal obstacles and multiple exits, e.g., railway station, air terminal, plaza, and park. In the model, the dynamic loading of pedestrian flows on a two-dimensional space is formulated by a cell transmission model, the movement of crowds is driven by space potential, and the optimization of evacuation time is solved by a proportional swapping process. In this way, the proposed model can be applied to not only efficiently optimize the evacuation process of a crowd with large scale but also recognize local congestion dynamics during crowd evacuation. Finally, a set of numerical examples are presented to show the proposed model’s effectiveness for optimizing crowd evacuation process and its application to design a class of variable guide sign systems.  相似文献   

2.
This paper presents a micro‐simulation modeling framework for evaluating pedestrian–vehicle conflicts in crowded crossing areas. The framework adopts a simulation approach that models vehicles and pedestrians at the microscopic level while satisfying two sets of constraints: (1) flow constraints and (2) non‐collision constraints. Pedestrians move across two‐directional cells as opposed to one‐dimensional lanes as in the case of vehicles; therefore, extra caution is considered when modeling the shared space between vehicles and pedestrians. The framework is used to assess large‐scale pedestrian–vehicle conflicts in a highly congested ring road in the City of Madinah that carries 20 000 vehicles/hour and crossed by 140 000 pedestrians/hour after a major congregational prayer. The quantitative and visual results of the simulation exhibits serious conflicts between pedestrians and vehicles, resulting in considerable delays for pedestrians crossing the road (9 minutes average delay) and slow traffic conditions (average speed <10 km/hour). The model is then used to evaluate the following three mitigating strategies: (1) pedestrian‐only phase; (2) grade separation; and (3) pedestrian mall. A matrix of operational measures of effectiveness for network‐wide performance (e.g., average travel time, average speed) and for pedestrian‐specific performance (e.g., mean speed, mean density, mean delay, mean moving time) is used to assess the effectiveness of the proposed strategies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract

Pedestrians are currently attracting the interest of various researchers and practitioners, particularly urban and transport planners. Analysis of the pedestrian behavior, environment and modeling has been carried out in diverse instances in the context of pedestrian planning. This paper seeks to identify the content of each of these three research areas and designate the linkages that connect their interests providing insights into planning indoor pedestrian facilities. To achieve this objective, a review of the literature on pedestrians walking indoors and indoor pedestrian environments was conducted. Understanding pedestrian behavior is fundamental in the pedestrian planning process. Principles of decision-making, cognition, wayfinding and flows were studied. When analyzing the pedestrian environment, Space Syntax and wayfinding analysis were found to be established methods that are an integral part of this field. Finally, the majority of the existing modeling approaches were identified. It was found that despite the dynamic evolution of each area, the integration of different research perspectives is weak. The paper concluded with the proposal of a mindmap which brings together all the concepts found in the literature and which should be explored for a more comprehensive planning of indoor pedestrian facilities.  相似文献   

4.
This paper presents an integrated model to design routing and signal plans for massive mixed pedestrian‐vehicle flows within the evacuation zone. The proposed model, with its embedded formulations for pedestrians and vehicles in the same evacuation network, can effectively take their potential conflicts into account and generate the optimal routing strategies to guide evacuees toward either the pickup locations or their parking areas during an evacuation. The proposed model, enhancing the cell transmission model with the notion of sub‐cells, mainly captures the complex movements in the vehicle‐pedestrian flows and can concurrently optimizes both the signals for pedestrian‐vehicle flows and the movement paths for evacuees. An illustrating example concerning the evacuation around the M&T Bank Stadium area has been used to demonstrate the application potential of the proposed model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
For the purposes of both traffic-light control and the design of roadway layouts, it is important to understand pedestrian street-crossing behavior because it is not only crucial for improving pedestrian safety but also helps to optimize vehicle flow. This paper explores the mechanism of pedestrian street crossings during the red-man phase of traffic light signals and proposes a model for pedestrians’ waiting times at signalized intersections. We start from a simplified scenario for a particular pedestrian under specific traffic conditions. Then we take into account the interaction between vehicles and pedestrians via statistical unconditioning. We show that this in general leads to a U-shaped distribution of the pedestrians’ intended waiting time. This U-shaped distribution characterizes the nature of pedestrian street-crossing behavior, showing that in general there are a large proportion of pedestrians who cross the street immediately after arriving at the crossing point, and a large proportion of pedestrians who are willing to wait for the entire red-man phase. The U-shaped distribution is shown to reduce to a J-shaped or L-shaped distribution for certain traffic scenarios. The proposed statistical model was applied to analyze real field data.  相似文献   

6.
Macroscopic pedestrian models for bidirectional flow analysis encounter limitations in describing microscopic dynamics at crosswalks. Pedestrian behavior at crosswalks is typically characterized by the evasive effect with conflicting pedestrians and vehicles and the following effect with leading pedestrians. This study proposes a hybrid approach (i.e., route search and social force-based approach) for modeling of pedestrian movement at signalized crosswalks. The key influential factors, i.e., leading pedestrians, conflict with opposite pedestrians, collision avoidance with vehicles, and compromise with traffic lights, are considered. Aerial video data collected at one intersection in Beijing, China were recorded and extracted. A new calibration approach based on a genetic algorithm is proposed that enables optimization of the relative error of pedestrian trajectory in two dimensions, i.e., moving distance and angle. Model validation is conducted by comparison with the observed trajectories in five typical cases of pedestrian crossing with or without conflict between pedestrians and vehicles. The characteristics of pedestrian flow, speed, acceleration, pedestrian-vehicle conflict, and the lane formation phenomenon were compared with those from two competitive models, thus demonstrating the advantage of the proposed model.  相似文献   

7.
Pedestrians adjust both speed and stride length when they navigate difficult situations such as tight corners or dense crowds. They try to avoid collisions and to preserve their personal space. State-of-the-art pedestrian motion models automatically reduce speed in dense crowds simply because there is no space where the pedestrians could go. The stride length and its correct adaptation, however, are rarely considered. This leads to artefacts that impact macroscopic observation parameters such as densities in front of bottlenecks and, through this, flow. Hence modelling stride adaptation is important to increase the predictive power of pedestrian models. To achieve this we reformulate the problem as an optimisation problem on a disk around the pedestrian. Each pedestrian seeks the position that is most attractive in a sense of balanced goals between the search for targets, the need for individual space and the need to keep a distance from obstacles. The need for space is modelled according to findings from psychology defining zones around a person that, when invaded, cause unease. The result is a fully automatic adjustment that allows calibration through meaningful social parameters and that gives visually natural results with an excellent fit to measured experimental data.  相似文献   

8.
This study proposes a microscopic pedestrian simulation model for evaluating pedestrian flow. Recently, several pedestrian models have been proposed to evaluate pedestrian flow in crowded situations for the purpose of designing facilities. However, current pedestrian simulation models do not explain the negotiation process of collision avoidance between pedestrians, which can be important for representing pedestrian behaviour in congested situations. This study builds a microscopic model of pedestrian behaviour using a two-player game and assuming that pedestrians anticipate movements of other pedestrians so as to avoid colliding with them. A macroscopic tactical model is also proposed to determine a macroscopic path to a given destination. The results of the simulation model are compared with experimental data and observed data in a railway station. Several characteristics of pedestrian flows such as traffic volume and travel time in multidirectional flows, temporal–spatial collision avoidance behaviour and density distribution in the railway station are reproduced in the simulation.  相似文献   

9.
Local density, which is an indicator for comfortable moving of a pedestrian, is rarely considered in traditional force based and heuristics based pedestrian flow models. However, comfortable moving is surely a demand of pedestrian in normal situations. Recently, Voronoi diagram had been successfully adopted to obtain the local density of a pedestrian in empirical studies. In this paper, Voronoi diagram is introduced into the heuristics based pedestrian flow model. It provides not only local density but also other information for determining moving velocity and direction. Those information include personal space, safe distance, neighbors, and three elementary characteristics directions. Several typical scenarios are set up to verify the proposed model. The simulation results show that the velocity-density relations and capacities of bottleneck are consistent with the empirical data, and many self-organization phenomena, i.e., arching phenomenon and lane formation, are also reproduced. The pedestrians are likely to be homogeneously distributed when they are sensitive to local density, otherwise pedestrians are non-uniformly distributed and the stop-and-go waves are likely to be reproduced. Such results indicate that the Voronoi diagram is a promising tool in modeling pedestrian dynamics.  相似文献   

10.
When operated at low speeds, electric and hybrid vehicles have created pedestrian safety concerns in congested areas of various city centers, because these vehicles have relatively silent engines compared to those of internal combustion engine vehicles, resulting in safety issues for pedestrians and cyclists due to the lack of engine noise to warn them of an oncoming electric or hybrid vehicle. However, the driver behavior characteristics have also been considered in many studies, and the high end-prices of electric vehicles indicate that electric vehicle drivers tend to have a higher prosperity index and are more likely to receive a better education, making them more alert while driving and more likely to obey traffic rules. In this paper, the positive and negative factors associated with electric vehicle adoption and the subsequent effects on pedestrian traffic safety are investigated using an agent-based modeling approach, in which a traffic micro-simulation of a real intersection is simulated in 3D using AnyLogic software. First, the interacting agents and dynamic parameters are defined in the agent-based model. Next, a 3D intersection environment is created to integrate the agent-based model into a visual simulation, where the simulation records the number of near-crashes occurring in certain pedestrian crossings throughout the virtual time duration of a year. A sensitivity analysis is also carried out with 9000 subsequent simulations performed in a supercomputer to account for the variation in dynamic parameters (ambient sound level, vehicle sound level, and ambient illumination). According to the analysis, electric vehicles have a 30% higher pedestrian traffic safety risk than internal combustion engine vehicles under high ambient sound levels. At low ambient sound levels, however, electric vehicles have only a 10% higher safety risk for pedestrians. Low levels of ambient illumination also increase the number of pedestrians involved in near-crashes for both electric vehicles and combustion engine vehicles.  相似文献   

11.
以无信号灯路口人车交通行为为研究对象,对行人和机动车辆在无信号灯路口的整体交通行为进行分类预测。在对路口现场交通情况进行拍摄后,用电脑的分帧技术对所需要的数据进行提取和分类,而后建立BP神经网络模型,确定神经网络的输入变量与输出变量。将样本数据导入神经网络并进行训练和测试后,得出行人和车辆过街类型的分类准确率,并且通过准确率所达到的标准来证明了BP神经网络模型的可行性。  相似文献   

12.
The promotion of space sharing in order to raise the quality of community living and safety of street surroundings is increasingly accepted feature of modern urban design. In this context, the development of a shared space simulation tool is essential in helping determine whether particular shared space schemes are suitable alternatives to traditional street layouts. A simulation tool that enables urban designers to visualise pedestrians and cars trajectories, extract flow and density relation in a new shared space design, achieve solutions for optimal design features before implementation, and help getting the design closer to the system optimal. This paper presents a three-layered microscopic mathematical model which is capable of representing the behaviour of pedestrians and vehicles in shared space layouts and it is implemented in a traffic simulation tool. The top layer calculates route maps based on static obstacles in the environment. It plans the shortest path towards agents’ respective destinations by generating one or more intermediate targets. In the second layer, the Social Force Model (SFM) is modified and extended for mixed traffic to produce feasible trajectories. Since car movements are not as flexible as pedestrian movements, velocity angle constraints are included for cars. The conflicts described in the third layer are resolved by rule-based constraints for shared space users. An optimisation algorithm is applied to determine the interaction parameters of the force-based model for shared space users using empirical data. This new three-layer microscopic model can be used to simulate shared space environments and assess, for example, new street designs.  相似文献   

13.
Cross-border transit facilities constitute major public investment, and thus must serve the long-term needs of the communities, such as providing access to schools and businesses, contributing to a shared regional culture and lifestyle, fostering international trade, and supporting jobs for the region’s residents. Numerous studies have been conducted to evaluate the economic implications of vehicular flow delays at border crossings, however none of the studies focused on assessing cross-border flow of bus passengers and pedestrians. Since pedestrians are considered to be autonomous, intelligent, and perceptive, it is a challenging task to predict pedestrian movement and behavior in comparison to vehicular flows which follow a specific set of traffic rules. This paper presents a multiagent based multimodal simulation model to evaluate the capacity and performance of a cross-border transit facility. The significance of this research is the use of dynamic mode choice functionality in the model, which allows an individual person to make instantaneous choices between available modes of transportation. The scope of interest of the paper is limited to simulating access interface, circulation areas, ancillary and processing facilities. The developed model was calibrated to ensure realistic performance, and validated against specific performance criteria such as throughput per processing facility. In order to demonstrate the applicability of the developed simulation model, capacity and operational planning of a pedestrian transit facility was performed. The relative performance of alternative design or configuration was evaluated using the level of service criteria. Lastly, the effectiveness of each proposed capacity or operational improvement strategy was compared to the “do-nothing” scenario.  相似文献   

14.
In many Chinese cities, pedestrian’s road crossing behavior is different from that of pedestrians in developed countries. This paper presents a pedestrian model for traffic system micro-simulation in China. Considering the high rate of signal non-compliance, we classify pedestrians into two types: law-obeying ones and opportunistic ones. Opportunistic ones decide whether to violate traffic signal during red man, depending on the states of some external factors (like policeman, vehicle flow and other pedestrians’ behaviors). Questionnaires were used to determine the proportions of these two types of pedestrians under different circumstances. In addition, a time gap distribution extracted from videotape were used to determine the criterion for pedestrians to decide whether to walk or wait when they conflict with vehicle flows. However, simulation results deviate from the data extracted from videotape in some degree. By adjusting the parameters on the basis of analyzing the occurrence of the deviations, the simulation results agree with the field results better. This model has represented the high rate of pedestrians’ red light running and the mixed characteristics of traffic flows in Chinese cities, and it may be applicable in the micro-simulation of traffic system in other developing cities.  相似文献   

15.
A macroscopic loading model applicable to time-dependent and congested pedestrian flows in public walking areas is proposed. Building on the continuum theory of pedestrian flows and the cell transmission model for car traffic, an isotropic framework is developed that can describe the simultaneous and potentially conflicting propagation of multiple pedestrian groups. The model is formulated at the aggregate level and thus computationally cheap, which is advantageous for studying large-scale problems. A detailed analysis of several basic flow patterns including counter- and cross flows, as well as two generic scenarios involving a corner- and a bottleneck flow is carried out. Various behavioral patterns ranging from disciplined queueing to impatient jostling can be realistically reproduced. Following a systematic model calibration, two case studies involving a Swiss railway station and a Dutch bottleneck flow experiment are presented. A comparison with the social force model and pedestrian tracking data shows a good performance of the proposed model with respect to predictions of travel time and density.  相似文献   

16.
The value of a pedestrian stream simulation depends on its ability to reproduce natural behaviour of pedestrians in different situations. Most models assume that pedestrians are single-minded and constantly move towards their destinations. However, our observations at two major German railway stations made during field experiments and our analysis of video recordings at one of these stations revealed that in virtually every setting a significant proportion of pedestrians do not walk continuously. Instead, they occasionally change their route in order to visit certain locations and stand there for a period of time. By waiting, they often block walking pedestrians and thereby influence the overall dynamics.In this paper, we evaluate the impact of waiting pedestrians and propose a model for waiting pedestrians based on cellular automata. The model is able to reproduce the observed pedestrian behaviour. We illustrate the model with simulations of several real life scenarios for a major German railway station and show that during rush hour standing pedestrians may prolong walking time by up to nearly 20%. We also demonstrate how the developed model can be used for the analysis of infrastructures, and prediction of problematic areas in public spaces.  相似文献   

17.
Although various theories have been adopted to develop reliable pedestrian walking models, a limited effort has been made to calibrate them rigorously based on individual trajectories. Most researchers have validated their models by comparing observed and estimated traffic flow parameters such as speed, density, and flow rate, or replaced the validation by visual confirmation of some well-known phenomena such as channelization and platooning. The present study adopted maximum likelihood estimation to calibrate a social-force model based on the observed walking trajectories of pedestrians. The model was assumed to be made up of five components (i.e., inertia, desired direction, leader–follower relationship, collision avoidance, and random error), and their corresponding coefficients represented relative sensitivity. The model also included coefficients for individual-specific characteristics and for a distance-decay relationship between a pedestrian and his/her leaders or colliders. The calibration results varied with the two density levels adopted in the present study. In the case of high density, significant coefficient estimates were found with respect to both the leader–follower relationship and collision avoidance. Collision avoidance did not affect the pedestrian’s walking behavior for the low-density case due to channelization. The distance limit was confirmed, within which a pedestrian is affected by neighbors. At the low-density level, by comparison with women, men were found to more actively follow leaders, and pedestrians walking in a party were found to be less sensitive to the motion of leaders at the high-density level.  相似文献   

18.
In many cases, pedestrian crossing demands are distributed discretely along an arterial segment. Demand origins, destinations and crosswalks comprise a pedestrian crossing network. An integrated model for optimizing the quantity, locations and signal settings of mid-block crosswalks simultaneously is proposed to best trade-off the operational performances between pedestrians and vehicles. Pedestrian behavior of choosing crosswalks is captured under a discrete demand distribution. Detour distance and delay at signalized crosswalks are formulated as a measure of pedestrian crossing cost. Maximum bandwidths are modeled in analytical expressions as a measure of vehicular cost. To solve the proposed model, the Non-dominated Sorting Genetic Algorithm II (NSGA II) based algorithm is designed and employed to obtain the Pareto frontier efficiently. From the numerical study, it is found that there exists an optimal number of mid-block crosswalks. Excess available crosswalks may make no contributions to improvement in pedestrian cost when the constraint of the minimum interval between crosswalks and vehicular cost are taken into account. Two-stage crosswalks are more favorable than one-stage ones for the benefits of both pedestrian and vehicles. The study results show promising properties of the proposed method to assist transportation engineers in properly designing mid-block crosswalks along a road segment.  相似文献   

19.
In this paper, we propose a methodology to use the communication network infrastructure, in particular WiFi traces, to detect the sequence of activity episodes visited by pedestrians. Due to the poor quality of WiFi localization, a probabilistic method is proposed that infers activity-episode locations based on WiFi traces and calculates the likelihood of observing these traces in the pedestrian network, taking into account prior knowledge. The output of the method consists of candidates of activity-episodes sequences associated with the likelihood to be the true one. The methodology is validated on traces generated by a known sequence of activities, while the performance being evaluated on a set of anonymous users. Results show that it is possible to predict the number of episodes and the activity-episodes locations and durations, by merging information about the activity locations on the map, WiFi measurements and prior information about schedules and the attractivity in pedestrian infrastructure. The ambiguity of each activity episode in the sequence is explicitly measured.  相似文献   

20.
This paper presents a hybrid simulation-assignment modeling framework for studying crowd dynamics in large-scale pedestrian facilities. The proposed modeling framework judiciously manages the trade-off between ability to accurately capture congestion phenomena resulting from the pedestrians’ collective behavior and scalability to model large facilities. We present a novel modeling framework that integrates a dynamic simulation-assignment logic with a hybrid (two-layer or bi-resolution) representation of the facility. The top layer consists of a network representation of the facility, which enables modeling the pedestrians’ route planning decisions while performing their activities. The bottom layer consists of a high resolution Cellular Automata (CA) system for all open spaces, which enables modeling the pedestrians’ local maneuvers and movement decisions at a high level of detail. The model is applied to simulate the crowd dynamics in the ground floor of Al-Haram Al-Sharif Mosque in the City of Mecca, Saudi Arabia during the pilgrimage season. The analysis illustrates the model’s capability in accurately representing the observed congestion phenomena in the facility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号