首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
跨江大桥历来都是城市交通的命脉和交通结点,为明确跨江大桥的运行速度特征以及驾驶行为模式,在重庆市菜园坝大桥展开了30位被试的小客车实车驾驶试验,使用航姿测量系统和Mobileye630采集自然驾驶状态下汽车的连续行驶速度、加速度和道路环境信息.基于自然驾驶数据,明确了菜园坝大桥的速度变化模式,分析了车辆合、分流对大桥主线行驶车辆运行特性的影响.研究结果表明,菜园坝长江大桥2个行驶方向都呈"加速-减速-加速-减速"的变化趋势;在自由流状态下,桥头和桥尾15th百分位与85th百分位速度的差值从10 km/h增加到20 km/h,不同驾驶人在大桥上的速度幅值具有较强的离散性,表明车辆之间存在严重的纵向冲突,揭示了跨江大桥车辆追尾事故的本质原因.菜园坝大桥菜苏方向合流区平均减速距离131 m,平均减速度为-0.301 m/s2,分流区平均减速距离213 m,平均减速度-0.406 m/s2,苏菜方向分流区平均减速距离267 m,平均减速为-0.387 m/s2,车辆在合流点附近的减速距离和减速度要低于分流点,合流与分流车辆的换道行为会显著影响大桥主线直行车辆的运行状态,导致驾驶人采取减速行为.匝道出入口与桥头距离越近,车辆速度受到的影响程度就会高,有必要加强分/合流点附近的交通管控和行车引导,提高车辆行驶安全性.   相似文献   

2.
为了解决汽车在仿真中加速度行驶的控制问题,基于功率平衡原理,对汽车行驶中的受力进行分析,建立汽车发动机逆模型,完成汽车加速度控制方法的建立。在matlab/simulink环境中建立汽车加速度控制算法,在汽车的加速度分别为1m/s~2,2m/s~2,3m/s~2进行仿真验证,仿真结果表明:随着行驶加速度的增加,控制器对汽车行驶速度的控制精度逐渐下降,并且速度偏差随之增大,但是基本可以保证汽车的行驶速度按照参考速度的变化趋势变化。  相似文献   

3.
<正>日前,贵广铁路榕江段第1座隧道转子口隧道比计划工期提前贯通。贵广铁路转子口隧道全长116 m,设计行车速度250 km·h~(-1)、预留300km·h~(-1)条件的客运专线双线隧道。该隧道的山体呈倒弯月形,隧道最大埋  相似文献   

4.
为提高车辆在弯道路段的行驶安全性,在分析弯道路段事故形态的基础上,提出弯道行驶安全性评价指标.同时,从车辆侧向稳定性分析角度,建立道路圆曲线半径与弯道路段行驶安全性的定量关系.通过TruckSim与Simulink的联合仿真实验,利用3种典型的弯道行驶工况,对现行规范中规定的标准弯道的行驶安全性进行评价.结果表明:道路圆曲线半径与车辆侧向稳定性呈正相关,车速与其呈负相关.在给定实验工况下,车速为120 km/h,圆曲线半径为500 m时,侧向加速度超过0.4g,横向载荷转移率达到0.7,车辆极易发生侧滑/侧翻;而当车速为40 km/h,圆曲线半径低于60m时,车辆动态响应的幅度虽有所增加,但车辆并不会发生侧滑与侧翻现象.   相似文献   

5.
山区地形地质条件复杂,各类复杂的组合线形设计更为常见,例如直线与平曲线间组合或不同平曲线间组合。驾驶人在相邻组合路段行驶时会感知到线形的变化,引起驾驶行为的改变,最终车辆的纵向加速度也会随之改变。频繁的加减速行为会引起驾驶人不适,甚至形成安全隐患。目前针对相邻组合路段驾驶行为的研究中,关于加速度的研究主要基于路段特殊点进行计算。随着驾驶模拟技术的发展,高仿真驾驶模拟器为高速公路的设计评估提供了更好的数据及试验条件支撑。在高仿真驾驶模拟器中,基于湖南省永吉高速公路道路设计参数及周边地形环境参数,构建山区高速公路的三维虚拟模型,以山区高速公路中的相邻组合路段为研究对象,获取山区高速公路组合线形路段的车辆纵向加速度数据,提取加减速事件后,基于驾驶人的加减速行为,采用混合Logit模型,分别判定道路线形层和驾驶人层的影响,研究组合线形对驾驶人纵向加减速选择的具体影响变量以及变量的影响范围。研究结果表明:下游路段最大曲率、上游路段圆曲线段比例、下游路段变坡点数量、下游路段曲线数量、上游路段平均曲率和当前位置曲率等对驾驶人加减速行为有显著影响;通过对比混合Logit模型和多元Logit模型,指出驾驶人层面对模型结果的影响显著。研究结果提供了一种山区高速公路连续纵向加减速行为的建模方案,并可为研究驾驶人在复杂线形条件下的纵向加速度选择行为提供基础。  相似文献   

6.
本文主要介绍全数字式减速度运算控制器的原理和技术要求。该装置样机的特点是:(1)车轮制动减速度运算采用数字量,不用数模转换方式;(2)参数调节范围采用一个减速度值,二个加速度值的控制方式。经装车试验取得了与原理一致的试验曲线和良好的制动效果。  相似文献   

7.
为了有效降低长大下坡路段重型载货汽车行车制动器的使用频率和驾驶强度,基于持续制动匹配等级和广义生长剪枝径向基函数(GGAP-RBF)减速度估计模型提出持续制动匹配控制策略。首先以重型载货汽车为研究对象,基于发动机制动、排气制动和电涡流缓速器制动试验研究持续制动力随行驶车速的变化关系;然后以当前车速、车速差以及道路坡度作为输入参数,需求减速度作为输出参数,基于GGAP-RBF建立需求减速度估计模型;最后依据需求制动力与等级制动力差值最小原则选择持续制动匹配等级,同时分别进行定坡度工况下试验验证和变坡度工况下仿真研究以验证控制效果。结果表明:4.2%定坡度工况下,采用所提出的控制策略持续制动等级仅切换2次,比控制最优驾驶人切换少1次,速度变化基本一致;13 160m变坡度工况下,能够实现稳定减速,150m后达到预定车速,随后在60~62km·h~(-1)范围内变化,具有变坡度工况适应性强的特点;所提出的控制策略能够依靠持续制动匹配分级控制而有效降低行车制动器的使用频率和驾驶强度,实现车辆减速和稳定车速下坡行驶的效果。  相似文献   

8.
针对自动驾驶车辆纵向速度的跟踪控制问题,提出了基于模型预测控制和微分先行比例-积分-微分(PID)的双层闭环控制策略:基于模型预测控制原理设计速度上层控制策略,采用层次分析法确定目标函数中的权重系数,计算出适应行驶条件的期望加速度;通过车辆逆纵向动力学模型计算对应的驱动力和制动力,控制车辆速度,采用微分先行 PID 进行反馈调节。结果表明:在该策略下车辆加速或减速行驶时,车辆具有较好的跟踪控制性能。  相似文献   

9.
为提升半挂汽车列车在高速公路弯道下坡路段的运行安全,采用TruckSim仿真软件,构建了车辆模型、道路模型和驾驶人动力学仿真模型;基于蒙特卡罗可靠性分析法,分别建立了半挂汽车列车发生侧滑失效、侧翻失效、折叠失效和系统失效的功能函数,并选取设计速度80 km·h~(-1)的高速公路为研究路段,通过进行大量车辆动力学仿真试验,对不同圆曲线半径、纵坡坡度、路面附着系数、车速和车辆总质量对半挂汽车列车的运行安全的影响进行了数值分析。研究结果表明:半挂汽车列车发生侧滑和侧翻的概率随着圆曲线半径的增加而显著降低,在一般最小半径400 m的情况下,半挂汽车列车发生侧滑失效和侧翻失效的概率趋近于0;随着下坡坡度的增加,半挂汽车列车发生侧滑失效和侧翻失效的概率基本呈线性增长趋势;车速对于半挂汽车列车运行安全的影响尤为显著,当车速均值由60 km·h~(-1)增加到90 km·h~(-1)时,发生侧滑失效和侧翻失效的概率分别增加了634倍和336倍;车辆总质量的增加对半挂汽车列车侧翻有显著影响;在路面附着系数较低的条件下,半挂汽车列车的主要事故形态为侧滑和折叠,在路面附着系数较高的情况下,半挂汽车列车的主要事故形态为侧翻。因此,在道路设计中,应避免极限最小半径与陡坡组合,严格限速和限载可确保半挂汽车列车的运行安全性能。  相似文献   

10.
为研究山区高速公路在侧风作用下的行车安全问题,基于CarSim仿真软件构建特定道路模型和侧风模型,选取车辆滑移角和侧向加速度作为行车风险评价指标,将圆曲线半径、路面摩擦系数、行驶速度分别作为单一变量,系统地模拟了侧风作用下山区高速公路行车稳定性.结果表明,降低车速、增大路面摩擦系数和圆曲线半径,可以有效地减小车辆的滑移角和侧向加速度.以7级侧风为仿真条件进行定量分析可知:80 km/h设计速度对应的圆曲线半径极限值应为280 m;路面摩擦系数为0.4和0.18时,分别限速70 km/h和60 km/h可维持车辆稳定性;105 km/h是车辆危险驾驶的临界车速,如进一步考虑舒适性,则应适当减速.   相似文献   

11.
在ABAQUS中建立移动的周期荷载,模拟真实的车辆荷载,分析连续式弯沉检测中检测速度、轴载大小、检测温度对路表弯沉产生的影响。计算表明:车速由40 km·h~(-1)增加到120 km·h~(-1)时,车速对弯沉值的影响显著,弯沉值下降了15.22%,尤其是在低速行驶时更加明显;路表弯沉与轴载大小基本上按照线性比例增加;当温度较低时,路表弯沉随温度较为缓慢变化,接近线性变化;当温度较高时,路表弯沉随温度的变化加快。研究结果初步揭示了检测参数对路表弯沉的影响,为连续式弯沉检测设备的开发应用提供了依据。  相似文献   

12.
为明确互通立交匝道的运行特性和驾驶风险,在重庆市南山立交和江南立交开展了超过30位被试者的小客车实车驾驶试验,通过Speedbox和Mobileye等车载高精度仪器采集了小客车在4条迂回式匝道上的连续运行数据,包括行驶速度、横向加速度、纵向加速度等,明确了迂回式匝道的车辆运行状态,然后运用表征横、纵向加速度关系的G-G图分析了匝道行驶过程中的驾驶风险,确定了立交匝道不同位置的危险等级及危险驾驶行为的高发路段。研究结果表明:①立交匝道上小客车的横向加速度与速度呈三角形分布,纵向加速度与速度呈椭圆形分布;②小半径曲线匝道上出现危险驾驶行为的比例要高于大半径曲线匝道;③通过统计不同断面的危险驾驶行为点占比,将匝道的危险断面分为低风险、中风险、高风险3个等级;④男性驾驶员在立交匝道上的危险驾驶行为占比要高于女性驾驶员,冒险型驾驶员的危险驾驶行为占比要高于其他驾驶风格的驾驶员;⑤立交匝道的危险高发路段通常位于速度变化剧烈的路段,即入弯减速段和出弯加速段。   相似文献   

13.
利用车载排放测试设备对某柴油乘用车进行了上海市典型道路的车载排放测试,分析了车辆在各典型道路上的行驶特征及车辆的THC、CO、NO x、CO2排放特性。结果表明,该柴油乘用车实际道路行驶工况具有平均车速度低、加(减)速度时间比大等特点,其加速(减)速的行驶时间和行驶里程分别占整个行驶时间的63.6%和行驶里程的83.2%;THC、CO、NO x、CO2排放率随车辆行驶速度、加速度的增加而增大,当车速超过90 km/h时,NO x和CO2的单位时间排放率急剧增加。  相似文献   

14.
为明确山区道路中减速带布设对车辆运行的影响,选择在重庆市主城区江南立交开展减速带布设区域的实车试验,采集了车辆的速度和加速度等数据,以此分析试验路段的运行特征。结果表明:①速度分布带宽在减速带两侧各40 m左右达到极小值,在减速带位置速度带宽出现反弹,表明在减速带布设位置车辆运行速度差异较大,容易产生追尾风险;②减速带对驾驶员的速度选择行为有较强的约束力,且2个减速带相隔越近对速度选择行为的约束作用越强,减速效果更好;③通过减速带之前的初速度越大,所需的减速长度越长,应越早采取减速措施;85th百分位减速长度值和加速长度值分别为225,212 m;④车辆通过减速带时的加速度、减速度与制动初速度、加速前初速度的大小密切相关;道路环境越复杂,车辆通过减速带时减速度与加速度曲线的差异性越显著;⑤减速带对车辆的速度折减率上限可达0.9,下限随初始速度的增大而增加。   相似文献   

15.
为了确定双挂汽车操纵稳定性的评价指标并进行横向稳定性分析,在分析国外多挂汽车列车研究现状的基础上,分别总结了结构参数和使用参数以及各种主动控制策略对多挂汽车列车横向稳定性的影响。与中国汽车列车操纵稳定性评价方法相比,针对多挂汽车列车增加了后部放大系数(RWA)和轨迹偏移量(Off-tracking)2种横向稳定性评价指标;构建了横摆运动和侧向运动的双挂汽车列车动力学模型,仿真阶跃响应下各个车辆单元侧向速度、横摆角速度、侧向-横摆相轨迹、侧向加速度以及铰接角的变化,并分别计算以横摆角速度和侧向加速度为基准的RWA值,将计算结果与国外相关研究文献进行了比较。结果表明:当牵引车和一挂车的侧向速度最大值分别为1.15,0.89m·s~(-1)时,对应拖台和二挂车的侧向速度最大值分别为2.81,1.31m·s~(-1),证明其为双挂汽车列车发生失稳的主要影响因素;由横摆角速度、侧向加速度对应的RWA值分别为1.14和1.54可知,以侧向加速度为基准的RWA值更能反映车辆的后部放大状态;由牵引车与一挂车之间的铰接角为5.9°,拖台与二挂车之间的铰接角为9.6°,而一挂车与拖台之间的铰接角恢复到0可知,一挂车与拖台的链接形式比第5轮式的铰接形式更稳定,且恢复到稳定状态时间更短;研究结果可为双挂汽车列车操纵稳定性评价指标的确定及应用提供参考。  相似文献   

16.
在道路线形设计中,路段间运行速度差是作为评价道路线形与行车安全的重要指标之一,准确地获取路段间运行速度变化十分重要。文中通过测取车辆在二级公路直曲衔接段上连续运行速度,研究车辆在二级公路中弯道处的驾驶行为,得出车辆在弯道处的速度变化规律,进而建立加速度与减速度预测模型;对比分析直曲衔接段单独车辆的速度变化85%统计值(Δ85V)与直曲两路段间85%速度统计值的差值(ΔV85)间的关系,发现ΔV85存在低估车速变化的情况,从而为线形设计评价方法的改进提供依据。  相似文献   

17.
针对传统自动紧急制动策略制动减速度波动大、制动过程乘坐舒适性及弯道制动安全难以保障的问题,提出一种基于深度强化学习的汽车自动紧急制动策略。建立了包括纵向、横向及横摆运动的3自由度车辆模型,根据碰撞预警时间设计奖励函数,应用深度确定性策略梯度算法设计了基于深度强化学习的自动紧急制动策略,开展了直道行驶工况与弯道行驶工况仿真测试。结果表明,所提出的策略具有很好的收敛性,在满足中国新车评价规程(C-NCAP)的直道行驶安全性要求的同时,提高了紧急制动时的乘坐舒适性,且实现了汽车弯道行驶的自动紧急制动,提高了弯道行驶安全性。  相似文献   

18.
弯道,按其道路情况可分为平曲弯线道(即平路转弯)、竖曲线弯道(即上下坡转弯)。汽车要安全、平稳地通过弯道,就要处理好两个问题:一是合理地选择车辆行驶路线,以保证行驶平稳;二是尽量选择较大的转弯半径,合理的控制好行车速度,使离心力降到最小。 平路转弯 汽车平路行驶时,由于道路阻力小,较易提高行驶速度,在运行速度较高时转弯会产生较大的离心力,急转弯就会产生更  相似文献   

19.
新型汽车行驶记录仪的研究   总被引:2,自引:0,他引:2  
目前,汽车行驶记录仪普遍将车轮转速记录为汽车行驶速度,但车轮抱死时,车轮速度不能真实反映汽车行驶速度。本文介绍一种由美国Cygnal公司的超低功耗C8051F系列的F320型单片机组成的记录仪系统,其中增加低成本的加速度传感器(美国AD公司的ADXL05微型力平衡式加速度传感器)记录制动时的汽车减速度,再依据制动时车轮初始速度及实测的加速度梯形公式计算汽车行驶速度。试验研究表明:行驶记录仪易标定、车速误差小、成本低、供电简单。  相似文献   

20.
弯道行车的驾驶技能 ①连续弯路.遇明弯且又没有情况,应在弯道内侧(小弯),尽量取直线行驶.若遇到明暗接合弯、暗弯处一定要做到减速、鸣号、靠右行,并随时准备停车.通过角弯(指窄山谷路或两边是树木,完全看不到前面的弯道)时,左转弯要尽量靠右,右转弯应减速鸣号先靠左行,这样可以提前发现情况,以便及时采取措施.(②上下坡弯和上下坡相连弯.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号