首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
从燃料电池汽车氢安全的角度对氢气的特性进行分析,研究了车载氢系统、燃料电池系统以及氢管理系统的安全设计,为燃料电池汽车氢安全的设计提供了理论与实际参考。  相似文献   

2.
车载氢系统作为燃料电池汽车的重要子系统之一,主要由储氢容器、压力调节器、单向阀、氢气加注口和压力释放阀等组成.当车辆运行颠簸或者发生碰撞时,车载氢系统的安装强度直接关系到整车氢安全,在国家标准中,分别对车载氢系统的技术要求和试验方法提出要求.针对80套国产车载氢系统进行安装强度试验,分析试验结果得出:Z方向相对位移最小,Y方向相对位移次之稍大,X方向相对位移最大.  相似文献   

3.
燃料电池汽车作为一种新能源汽车,可以实现零污染排放,是未来新能源汽车的主要发展方向之一.由于氢气具有易燃、易爆的化学性质,在燃料电池汽车的商业化进程中,氢泄漏安全问题也必须得到重视.围绕受限空间内燃料电池汽车氢泄漏这一主题,结合实际应用场景,将氢泄漏安全保障问题拆解为燃料电池车辆、场景设置及应对氢泄漏措施3个方面的约束,系统探讨了燃料电池汽车在受限空间内的氢泄漏安全保障问题.该研究有助于受限空间内燃料电池汽车氢泄漏安全问题的解决,并可为燃料电池汽车运行安全相关标准的制订提供参考.  相似文献   

4.
简单介绍了插电式燃料电池轿车的结构及其氢管理系统的功用,重点依据热力学理论,阐述了燃料电池轿车车载氢瓶在加氢和供氢过程中氢气的温度、压力和SOC的变化情况,并在MATLAB/Simulink平台上完成建模,通过仿真可以比较直观地反映出上述参数变化的大致规律,从而实现对加氢和供氢过程的模拟,同时为氢安全的设计和验证工作打下了良好的基础。  相似文献   

5.
本文依照工程热力学基本理论建立了车载储氢瓶中氢气充入质量与氢气状态参数的预测模型,通过实验数据验证了模型的合理性。利用该模型分析了充氢温度对充气结束后气瓶内填充质量与最终温度的影响和环境温度对充气结束后车载储氢瓶内最终温度的影响。结果表明:车载气瓶内初始压力越低,可填充气体质量随充氢温度的升高其减少率越大,最终温度随充氢温度的升高其温升率越大;车载气瓶内初始压力越低,最终温度随环境温度的升高其温升率越低。同时该预测模型可以针对车载气瓶内不同的初始条件去预测气源氢气所需的最低预冷温度,为目前加氢站的气源氢气温度的控制提供理论依据,进而减少加氢站氢气冷却所需能耗。  相似文献   

6.
主要从安全角度简要介绍70 MPa车载氢系统的组成、设计、零部件选型,并依据相关标准对氢系统结构强度进行仿真和测试.  相似文献   

7.
介绍燃料电池汽车车载氢系统国内外测试标准的现状及差异,提出我国未来车载氢系统测试标准的修订建议。  相似文献   

8.
车用燃料电池的燃料出现多样化燃料电池是以氢气和氧气为原料,利用它们在高温下发生化学反应产生电能的原理制成的装置。质子交换膜燃料电池是目前汽车领域呼声较高的一代动力装置。燃料电池所需的氧气可以从空气中获得,较大的技术难点在于怎样获得所需的燃料——氢气。燃料电池汽车将以多快的速度在全世界普及,取决于所使用的氢燃料的类型。质子交换膜燃料电池目前主要包括氢质子交换膜燃料电池、甲醇重整燃料电池和天然气或汽油重整燃料电池等类型(见表2)。氢:从环保角度来看,理想的解决方案是使用纯净的氢气,然而,尽管氢的比能量最高可达到120.7kJ/g,但是由于氢在常温下为气体,而且单位体积的能量密度小,若使燃料电池汽车行驶里程达到500km,则在常温常压下需要约36m~3的氢气,若用在小轿车上,这将需要很大的存储空间,显然这是不现实的,并且还要以很大的成本在世界各地建立一套新的燃料供应系统。目前解决办法主要有压缩氢气、液化氢气以及合金储氢。压缩氢气就是将氢气比正  相似文献   

9.
氢燃料电池汽车排氢阀,直接关系着氢燃料电池汽车电堆的性能及其安全。氢燃料电池汽车行驶时,排氢阀处于打开或是关闭状态。打开时,把阳极侧少部分的水和混合气体排到大气中,使得氢气浓度保持较高水平,电堆转化效率不至于降低过多;关闭时,使得阳极能够保持足够的工作压力,使得电堆保持较好的转化效率。文章说明了氢燃料电池汽车的排氢阀的在燃料电池系统中的作用、工作原理、开启时间。  相似文献   

10.
正近日,中国汽车工业协会上市公司委员会2016年第二次理事会审议通过了《中国氢能源汽车产业联盟设立策划书》,中国氢能源汽车产业联盟正式成立。产业联盟的成员主要来自氢燃料电池汽车上下游全产业链里的企业、专家、知名人士、资本市场专业投资人士等。氢燃料电池汽车相较纯电动汽车更具优势,氢燃料电池汽车利用氢的化学反应为汽车提供电能,动力更可持续,能效更高,续航里程更长;排放物只有水,实现了零碳排放,没有二次污染;加气时间也大大缩短;氢气密度较轻,一旦发生泄漏会向上竖状扩散,爆炸的可能性不大;而更具优势的是,氢气属于可再生资源,工业废气、风水发电等均可带  相似文献   

11.
四、新型金属材料 1.贮氢金属.多年来,各国都在致力于减少或根除汽车排放有害气体的研究,以氢代替汽油的氢气汽车已有不少汽车公司列为重要研究方向之一.但到目前为止,氢气汽车还未达到实用的阶段.一方面,廉价制取氢的系统尚在研究中,另一方面,现行的气态与液态氢的燃料桶笨重,而且易爆炸,不安全.  相似文献   

12.
氢燃料发动机三维数值模拟研究   总被引:2,自引:0,他引:2  
通过CFD软件STAR-CD建立了缸外预混合氢燃料发动机三维模拟仿真模型。对比氢燃料发动机与汽油发动机的性能发现,氢燃料发动机具有易点燃、火焰传播速度快、峰值压力及峰值温度高等特点。但氢气密度低,与空气形成的混合气单位体积的热值低,导致采用缸外预混合方式的氢燃料发动机比汽油机功率低15%左右。研究了过量空气系数和点火提前角对氢燃料发动机性能及NOx排放的影响,为提高氢燃料发动机的动力性能和排放性能提供依据。  相似文献   

13.
搭建了燃料电池系统测试台架,设计了引射器和氢气循环泵两个部件基于燃料电池系统的测试方案,并对引射器和氢气循环泵进行了性能测试和对比分析。测试数据表明,引射器方案的燃料电池系统系统输出功率比氢气循环泵方案大0.1kW~0.3kW,系统效率比氢气循环泵方案低0.2%~0.7%,从燃料电池系统系统层面分析氢循环部件性能可以获得更为全面的评价分析结果。  相似文献   

14.
在一台加装了电控氢气喷射系统的四缸汽油机上,就点火角对汽油中掺混氢气时发动机性能的影响进行了试验研究.试验中发动机转速恒定在1 400r/min,混氢时通过调整氢气喷射脉宽使进气中氢气的体积分数为3%,同时调整汽油的喷射脉宽使混氢和不混氢两种条件下,发动机过量空气系数均保持在1.2.试验结果表明,与原机比较,混氢后发动机平均有效压力最大时的点火角延迟,燃烧持续期缩短,点火角相同时,HC和CO排放降低,但NOx排放有所增加;混氢时,随着点火提前角的增加燃烧速度明显加快,而排放物的变化趋势与原机相同:HC与NOx排放升高,而CO排放降低.  相似文献   

15.
正2020年6月13日,沈海高速公路浙江温岭段发生一起运输液化石油气的槽罐车泄漏燃爆事故,事故共造成20人死亡、175人受伤,23辆车受损、40余栋民房和厂房严重损毁,社会影响极其恶劣,事故教训极其深刻,引起了全社会的广泛关注。事故的发生暴露出道路交通安全存在的一些突出风险隐患,企业安全生产主体责任严重缺位、危化品罐体安全防护性能堪忧、危化品运输安全监管能力不适应等等。  相似文献   

16.
燃料电池船舶运载着大量氢气作为燃料,在给船舶带来动力的同时,也因其易泄漏、爆炸等特性对船舶安全带来了威胁.针对船舶燃料电池舱内发生氢气泄漏的情景,选取目标船舶建立其燃料电池舱三维几何模型,并基于理想气体模型和氢气泄漏参数,计算出氢气从管道的泄漏值.再基于流体计算软件Fluent,选取适合的气体扩散模型,通过边界条件的设置,开展对舱门开闭和通风口状态的联合通风条件下氢气在舱内的扩散过程的瞬态数值仿真实验,并对不同条件下的舱内氢气浓度分布和发展规律进行了对比分析.仿真结果表明,在舱室上方的4个角落处,氢气的聚积浓度更高,是氢气探测器安装的最佳位置;在通风口保持自然通风的条件下,打开舱门可以使氢气的最终浓度降低20%左右;在单个通风口采用强制通风的通风量达到6 m3/s时,燃料电池舱内的氢气向其他舱室的扩散浓度可以维持在4%的安全浓度以下,且整个舱室的氢气浓度都可以保持在一个较低的水平,而继续增大通风量对氢气浓度的降低效果并不显著.   相似文献   

17.
《燃料电池电动汽车安全全球技术法规》(以下简称《燃料电池汽车安全法规》)二阶段(UN GTR 13-Ⅱ)文本已经于2023年6月份通过UN/WP.29的审查,并获得全票通过。该法规由中国、美国、韩国和日本共同牵头修订,其主要内容涉及压缩氢气储存系统、车载氢系统的性能安全,此外还有车载液氢系统性能安全等。其中,气态压缩储氢系统占据了60%以上的内容,包括基准指标验证试验、性能耐久性验证测试、预期道路性能验证试验、失火导致的服务结束性能的验证试验、封闭耐久性验证测试等。本法规解读报告由UN GTR 13中国团队的核心成员编写,报告分为整体情况、碰撞试验、储氢系统、火烧试验、液氢五个系列。  相似文献   

18.
根据燃料电池汽车储氢和供氢系统在整车行驶和停放时的实际工作环境和状态,考虑储供氢系统在行驶和停放过程中可能出现的各种事故情况,参考车用储氢装置的现行标准,针对储供氢系统在整车上的布置情况,设计了一个不同安全等级,多层次监控的氢气安全系统.该系统已在世博燃料电池车上使用,运行正常.  相似文献   

19.
氢燃料电池技术有可能为汽车、能源工业带来革命性的变化,毫无疑问会使汽车产业的竞争格局、能源供应方式发生根本变化。汽车产业价值链将出现重大的变革,价值链的核心不再是燃油、燃油发动机,而是氢燃料电池、储氢与供氢系统。本文建立氢燃料汽车价值链模型并进行了分析,氢燃料汽车电池、储氢与供氢系统将是新商业模式最大受益者;燃油、内燃机供应商、传统汽车制造商的前景将不容乐观,相关企业需从新的产业链找到位置和突破口,才能在变革中求得发展。  相似文献   

20.
为研究氢内燃机汽车推广应用潜在的经济价值,对氢气的生产成本、氢内燃机汽车的改装成本、运行成本进行了调查研究,探讨了轿车和公交车改装氢内燃机后潜在的碳交易收益。研究结果表明,当前技术条件下,氢气使用成本为2~2.5元,m3与汽油轿车相比,氢内燃机轿车可节省35%左右的燃料费用:与城市单层中型柴油公交车相比,氢内燃机公交车可节省20%左右的燃料费用。在不考虑政府补贴的前提下,氢内燃机轿车运行3年的碳排放收益与运营成本节约能够抵消改装成本,氢内燃机公交车运行10年可抵消改装成本。与CNG汽车相比,氢内燃机汽车能够持续、稳定地获得可观的碳交易收益。因此,氢内燃机轿车及公交车的推广具有良好的经济效益和长远的环境效益。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号