首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
为研究盾构隧道下穿施工对地表沉降影响,依托武汉地铁3号线区间盾构隧道工程,运用ANSYS有限元软件对盾构隧道在不同埋深条件下下穿路基和箱涵进行模拟,得到了不同埋深盾构隧道下穿施工对既有的路基和箱涵及对应地表沉降扰动规律,将对应的地表沉降与Peck公式预测的地表沉降进行对比分析,总结了盾构下穿施工与Peck公式预测的地表沉降之间异同。结果表明:①随着埋深的增加,盾构隧道下穿施工导致地表沉降减小,沉降槽宽度逐渐增加;②先行线对地表沉降的影响较后行线大;③盾构隧道下穿箱涵施工的地表最大沉降与Peck公式预测值十分接近,而隧道下穿路基的地表最大沉降比Peck公式预测值偏小。  相似文献   

2.
Peck公式广泛用于地铁隧道施工地表沉降计算,沉降槽宽度系数(i)是该公式的主要参数之一。目前各类沉降槽宽度系数(i)计算式多为现场实测数据或室内试验数据拟合求出,不能理论地反映出沉降槽宽度系数(i)与隧道埋深、地层土的性质、隧道半径的关系。从地表沉降曲线变形规律出发,假定地层在沉降曲线拐点处稳定状态发生变化,提出土体破坏剪切面通过沉降曲线的拐点的观点,基于太沙基极限平衡原理,求出了地表沉降槽宽度系数(i)计算式。两组工程实例的实测数据与计算沉降曲线的对比表明实测数据与预测结果吻合良好,误差较小,验证了提出的沉降槽宽度系数(i)计算式的准确性和适用性。  相似文献   

3.
在地铁隧道施工过程中,引起地表沉降的因素较多,致使一些常用的地表沉降评价预计方法出现较大的偏差。为了研究由于地铁隧道施工而引起的地表沉降问题,以无锡地区地铁隧道开挖过程中大量地表沉降实测数据为基础,采用数学方法,引入两个修正系数,即地表最大沉降修正系数α和沉降槽宽度修正系数β,修正Peck公式中两个重要参数(沉降槽宽度系数K、地层土体损失率η),以适应无锡软土地区研究区段的工况。研究表明:地表最大沉降修正系数α介于0.5~0.9,沉降槽宽度修正系数β介于0.5~0.9,此时沉降槽宽度系数K介于0.40~0.70,底层土体损失率η介于0.4%~0.9%,得到修正后的Peck曲线与地表实测沉降数据更吻合。  相似文献   

4.
曾德成  荆涛 《路基工程》2018,(4):151-155
针对乌鲁木齐地铁1号线新疆大学—二道桥区间盾构隧道沿线近距离侧穿匝道桥扩大基础时的沉降问题,基于实际地层条件和地表沉降监测数据,结合最小二乘法和Peck理论公式拟合出某典型断面的实测地表沉降槽曲线,得到相应的地表最大沉降值Smax以及沉降槽宽度i等拟合结果,进而反演分析地表沉降槽宽度系数K和地层损失率η并给出建议值。结果表明:土压平衡盾构机穿越某泥沙地层断面时,运用Peck公式可以拟合沉降趋于稳定时的地表横向沉降槽曲线,地表沉降槽宽度系数  相似文献   

5.
张鹏  李志宏  曾聪  马保松 《隧道建设》2017,37(9):1120-1125
为了研究曲线顶管施工引起的地表变形,通过分析拱北隧道管幕工程曲线顶管现场实测数据,得出曲线顶管地表沉降槽的偏移曲线;在现有Peck和Loganathan地表变形计算公式的基础上,考虑曲线顶管与隧洞的相对位置对沉降槽偏移量的影响,得出经过沉降槽偏移修正的Peck和Loganathan地表变形预测公式。结果表明:1)曲线顶管施工引起的地表沉降槽曲线表现为非对称,最大沉降点可能出现在轨迹弯曲内侧,也可能偏向外侧;2)曲线顶管与隧洞相对位置引起的土体损失变化是造成沉降槽偏移的主要原因,相对位置与顶管穿越地层性质、顶进力、注浆压力和轨迹曲率半径等因素有关;3)修正的Peck公式可以较好地反映砂层和淤泥质土层中曲线顶管施工地面沉降槽偏移效应和最大沉降量。  相似文献   

6.
为了预测圆形隧道施工引起地表以下不同埋深地层沉降特征,首先,通过理论推导不同地层最大沉降位移与沉降槽宽度系数的函数关系;然后,建立包括试验台架、地层模型、圆形隧道开挖模型以及测量地层变形装置的平面应变模型试验系统。通过理论解析和模型试验可知:1)地表以下地层的最大沉降位移与沉降槽宽度系数成反比;2)不同深度地层的沉降位移随着地层埋深的增加而增大,且地表以下地层沉降槽曲线仍然符合正态分布;3)通过对模型试验数据进行回归分析,得到黏土地表以下不同深度地层沉降槽宽度系数的计算公式,从而为预测圆形隧道施工地表以下不同深度地层竖向位移提供了一种可靠的计算方法。  相似文献   

7.
为解决北京地铁隧道施工不同影响区划分和影响范围确定的不准确问题,对北京地区13 条地铁线路、903 份隧道工程的地表横向沉降槽资料进行分析,根据施工方法和地层条件的不同,分别对盾构法和矿山法施工隧道在黏性土地层、砂卵石地层等区域的沉降槽Peck 公式拟合参数进行统计分析,得出地层损失率和宽度参数的分布形态、相关统计值以及与隧道相对埋深的相关性。研究结果表明: 1)地层损失率和宽度参数的数理统计结果可以很好地指导北京及类似地层条件的城市地铁隧道工程影响区划分和影响范围的确定; 2)施工方法和地层条件是影响地铁隧道周围地层变形的重要因素,工程地表变形控制应注重相关研究; 3)建议各地深入开展地铁隧道沉降槽的拟合分析研究,为隧道工程影响区划分和影响范围确定提供科学依据。  相似文献   

8.
Peck公式一般应用于水平地表隧道施工沉降预测,而对于山岭隧道,特别是进出口段往往地形倾斜,存在不同程度的偏压。对Peck公式进行改进,使其适用于倾斜地表沉降预测。针对基本遗传算法局部搜索能力不强,易陷入局部极值,不能收敛等缺陷采用改进遗传算法,加强局部搜索能力。对改进后的Peck公式中的计算参数运用改进遗传算法进行优化,并将其应用于青山岗隧道施工引起的倾斜地表沉降预测。结果表明,改进遗传算法是参数优化的一种有效的方法。  相似文献   

9.
改进遗传算法在浅埋隧道施工倾斜地表沉降预测中的应用   总被引:1,自引:0,他引:1  
Peck公式一般应用于水平地表隧道施工沉降预测,而对于山岭隧道,特别是进出口段往往地形倾斜,存在不同程度的偏压。对Peck公式进行改进,使其适用于倾斜地表沉降预测。针对基本遗传算法局部搜索能力不强,易陷入局部极值,不能收敛等缺陷采用改进遗传算法,加强局部搜索能力。对改进后的Peck公式中的计算参数运用改进遗传算法进行优化,并将其应用于青山岗隧道施工引起的倾斜地表沉降预测。结果表明,改进遗传算法是参数优化的一种有效的方法。  相似文献   

10.
为了研究盾构施工影响下隧道埋深、地层损失率、颗粒级配对砂土地层变形规律的影响,设计由试验模型箱、隧道开挖模拟装置以及非接触试验监测系统组成的模型试验系统,利用该试验系统对10种试验工况进行研究。试验模型箱是由钢化玻璃板、底部钢板以及刚框架组合而成的开口箱体,砂性地层采用完全烘干的砂土来制作,盾构开挖过程通过一种能够精确控制地层损失率大小的小型圆筒状传动装置来模拟,试验过程中的地层变化利用视频测量系统进行监测。研究结果表明:随着隧道埋深增加,土体扰动范围逐渐向两侧扩展,地表最大沉降值逐渐减小;当隧道埋深临近土拱形成深度时,沉降槽宽度显著增加,隧道上方核心沉降区逐渐减小。地层损失率与沉降槽宽度之间存在明显的线性关系。砂土粒径越大,地表最大沉降值越小,沉降槽宽度越大;当最大粒径与最小粒径比一定时,地层沉降范围内的最大沉降量随着砂土粒径的增大而减小;当最大粒径一定时,地层沉降范围内的最大沉降量随着粒径范围的增大而增大。不同隧道埋深、地层损失率和砂土颗粒级配下的地表沉降曲线均具有类似高斯分布函数的形态特征,向隧道中线处急剧下降,向远处逐渐变缓,与地层变形规律相似。  相似文献   

11.
广珠西线高速公路实测沉降表明,沉降速率与剩余沉降基本为线性关系,沉降速率与剩余沉降的平方基本为正比关系,进而从理论上论证了两者的关系。两者的这种关系有利于将工后沉降法、沉降速率法统一起来。  相似文献   

12.
软土路基在施工期间若沉降量过大,会造成工程造价的大幅度增加。为避免这种现象发生,该文从理论和实践等几个方面分析沉降差异的原因,并根据工程经验提出解决方法。  相似文献   

13.
为了获得北京地区盾构隧道施工引起地层位移的实测资料,并分析不同布置下双线盾构隧道引起的沉降特征,以北京地铁8号线二期工程为依托,分别在双线盾构区间隧道的平行段和交叠段设置分层沉降监测断面,研究盾构施工引起的不同深度处地层沉降规律。分析表明:北京典型地层不同深度的沉降槽曲线可用高斯分布来描述,沉降槽宽度随深度的增加不断减小;不同深度处,盾构到达监测断面前、超过监测断面1倍埋深距离、后期沉降这3部分大致各占总沉降的1/3;对于双线交叠盾构隧道,当先开挖下面的隧道再掘进上面的隧道时,沉降槽整体变深;北京典型地层条件下(地下水位以上),不同深度处沉降槽对应的地层损失率基本不变;施工中,盾构停机会使地层损失率和沉降量明显增大。  相似文献   

14.
既有隧道下的隧道施工引起的沉降日益受到比以往更多的关注。由于在这些基础设施(建筑地面,砌体地下隧道,管道和其他设施)下的隧道施工在过去几十年隧道施工对现有基础设施建设的损害已经产生。基于Mair的理论分析和确定在既有隧道下新隧道施工引起的地面沉降和地面体积损失之间关系。由方程和三维有限元数值模拟确定地面沉降。计算现有隧道因新隧道施工引起的最大沉降。通过使用三维有限元分析,提出因隧道施工导致现有隧道的沉降和地面体积损失的控制方法。在新隧道施工之前使用大管棚(LPS)增强技术,通过与不使用LPS增强技术的情况进行比较,从而对使用LPS增强技术对地面体积损失控制的效果进行评价。结果表明LPS增强技术可以显著减少新隧道施工导致现有隧道的沉降,地面损失方法被证明是估计LPS增强效应的有效途径。  相似文献   

15.
为提高公路改扩建项目建设水平,分析了路基差异沉降量的计算理论和主要原因,利用ANSYS15.0绘制数值模型,得到新老路基间的不均匀沉降变形,并探讨加宽高度、填料重度的影响规律.研究结果表明,路基竖向位移和水平位移基本呈中间小两边大的"凸"形变化趋势,其最大值分别位于土路肩的边缘和新老路基结合位置;随着加宽高度和填料重度增加,加宽路基和地基土各监测点的沉降变形和新老路基间差异沉降也随之变大,且路基加宽高度从2 m至12 m,新老路基不均匀沉降提高129.3%,填料重度每提高5 kN/m3,新老路基差异沉降平均增加79.4%.  相似文献   

16.
高速公路拓宽工程变形性状分析   总被引:14,自引:1,他引:14  
对于高速公路拓宽工程,建立有限元分析计算模型,分析了地基及填方路基的变形性状,以及模量变化对地基及填方路基沉降的影响,对高速公路拓宽工程具有一定的指导意义。  相似文献   

17.
结合动力固结地基处理工程实践,对路基变形进行了测量分析,路基土体各分层沉降开始时增加很快,后来慢慢变缓,并沿深度递减,最大沉降量达到675 mm,在4~6 m深处淤泥土层土体水平位移大。在地基沉降计算时,提出一种动力固结路基沉降计算新方法,总沉降量计算值为651.83 mm,实测值为675 mm,两者比较相近,说明该沉降计算方法可行。  相似文献   

18.
近年来,随着我国高速公路的延伸,出现了越来越多的高填方路堤,为此,针对出现的高路堤,开展路堤沉降观测和沉降规律的研究就有其必要性。该文通过对实验的路基沉降观测资料进行整理分析既可以对后期沉降进行预测,也可以总结不同土质路堤的沉降变形规律,据此可以指导进一步的优化设计,改进有关的施工工艺,直接为公路施工决策提供科学依据。  相似文献   

19.
依据《公路沥青路面养护技术规范》和《公路水泥混凝土路面养护技术规范》的平整度要求,建立路基工后沉降模型,提出沉降特征长度参数,计算路基工后沉降标准限值,最后按照不同等级公路和不同结构物施工形式划分路基允许工后沉降标准。较我国目前所采用的沉降标准,更具有实用性和科学性。  相似文献   

20.
路基沉降预测的非等间隔Asaoka法   总被引:1,自引:0,他引:1  
路基沉降预测对于确保高速铁路无砟轨道结构铺设质量非常重要。《客运专线铁路无砟轨道铺设条件评估技术指南》中推荐的沉降预测方法对沉降观测数据时间间隔的要求并不一样。其中,Asaoka公式是根据一维固结问题推导得出,具有明确的物理意义,但需要沉降观测数据为等时间间隔数据。根据微分变差分原理,采用前向差分和后向差分推导出了非等间隔Asaoka法。工程实例应用结果显示非等间隔Asaoka法具有较好的预测效果,可以直接应用于非等间隔沉降数据,避免了Asaoka方法在应用中存在的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号