首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 426 毫秒
1.
王腾 《路基工程》2017,(1):160-164
以某地铁暗挖区间隧道施工为工程背景,运用MIDAS-GTS数值模拟,探讨了隧道埋深、地层条件、支护条件等因素对地铁区间隧道暗挖施工引起地表沉降的影响。研究结果表明:随着隧道埋深和土体弹性模量、黏聚力及内摩擦角的增大,均使开挖过程中的土体扰动效应减小。而支护强度对最大地表沉降量Smax、地层损失率Vl及沉降槽宽度系数i的影响不明显。  相似文献   

2.
在地铁隧道施工过程中,引起地表沉降的因素较多,致使一些常用的地表沉降评价预计方法出现较大的偏差。为了研究由于地铁隧道施工而引起的地表沉降问题,以无锡地区地铁隧道开挖过程中大量地表沉降实测数据为基础,采用数学方法,引入两个修正系数,即地表最大沉降修正系数α和沉降槽宽度修正系数β,修正Peck公式中两个重要参数(沉降槽宽度系数K、地层土体损失率η),以适应无锡软土地区研究区段的工况。研究表明:地表最大沉降修正系数α介于0.5~0.9,沉降槽宽度修正系数β介于0.5~0.9,此时沉降槽宽度系数K介于0.40~0.70,底层土体损失率η介于0.4%~0.9%,得到修正后的Peck曲线与地表实测沉降数据更吻合。  相似文献   

3.
曾德成  荆涛 《路基工程》2018,(4):151-155
针对乌鲁木齐地铁1号线新疆大学—二道桥区间盾构隧道沿线近距离侧穿匝道桥扩大基础时的沉降问题,基于实际地层条件和地表沉降监测数据,结合最小二乘法和Peck理论公式拟合出某典型断面的实测地表沉降槽曲线,得到相应的地表最大沉降值Smax以及沉降槽宽度i等拟合结果,进而反演分析地表沉降槽宽度系数K和地层损失率η并给出建议值。结果表明:土压平衡盾构机穿越某泥沙地层断面时,运用Peck公式可以拟合沉降趋于稳定时的地表横向沉降槽曲线,地表沉降槽宽度系数  相似文献   

4.
为了研究盾构施工影响下隧道埋深、地层损失率、颗粒级配对砂土地层变形规律的影响,设计由试验模型箱、隧道开挖模拟装置以及非接触试验监测系统组成的模型试验系统,利用该试验系统对10种试验工况进行研究。试验模型箱是由钢化玻璃板、底部钢板以及刚框架组合而成的开口箱体,砂性地层采用完全烘干的砂土来制作,盾构开挖过程通过一种能够精确控制地层损失率大小的小型圆筒状传动装置来模拟,试验过程中的地层变化利用视频测量系统进行监测。研究结果表明:随着隧道埋深增加,土体扰动范围逐渐向两侧扩展,地表最大沉降值逐渐减小;当隧道埋深临近土拱形成深度时,沉降槽宽度显著增加,隧道上方核心沉降区逐渐减小。地层损失率与沉降槽宽度之间存在明显的线性关系。砂土粒径越大,地表最大沉降值越小,沉降槽宽度越大;当最大粒径与最小粒径比一定时,地层沉降范围内的最大沉降量随着砂土粒径的增大而减小;当最大粒径一定时,地层沉降范围内的最大沉降量随着粒径范围的增大而增大。不同隧道埋深、地层损失率和砂土颗粒级配下的地表沉降曲线均具有类似高斯分布函数的形态特征,向隧道中线处急剧下降,向远处逐渐变缓,与地层变形规律相似。  相似文献   

5.
陶思海 《路基工程》2021,(2):153-157
基于宁波地铁4号线类矩形盾构隧道区间段地表沉降实测数据,采用Peck公式并结合最小二乘法和回归分析方法,得到最大地表沉降实测值Smax_实测、最大地表沉降拟合值Smax_拟合、沉降槽宽度i、宽度系数K及地层损失率Vl统计结果,并分析了宽度系数K、地层损失率Vl以及修正系数α和β的分布规律,确定了建议值。  相似文献   

6.
Peck公式广泛用于地铁隧道施工地表沉降计算,沉降槽宽度系数(i)是该公式的主要参数之一。目前各类沉降槽宽度系数(i)计算式多为现场实测数据或室内试验数据拟合求出,不能理论地反映出沉降槽宽度系数(i)与隧道埋深、地层土的性质、隧道半径的关系。从地表沉降曲线变形规律出发,假定地层在沉降曲线拐点处稳定状态发生变化,提出土体破坏剪切面通过沉降曲线的拐点的观点,基于太沙基极限平衡原理,求出了地表沉降槽宽度系数(i)计算式。两组工程实例的实测数据与计算沉降曲线的对比表明实测数据与预测结果吻合良好,误差较小,验证了提出的沉降槽宽度系数(i)计算式的准确性和适用性。  相似文献   

7.
土压平衡盾构广泛应用于地铁隧道施工中,其施工过程产生的地表沉降及相关问题直接影响隧道施工安全。以成都地铁3号线某区间盾构隧道工程为例,应用理论方法计算盾构开挖面压力取值范围。结合工程地质条件、施工参数、不同开挖面压力和地层损失率,利用嵌入了土应力路径本构模型的ABAQUS软件进行盾构开挖三维模拟,得到了卵石地层盾构施工引起的地表沉降规律,并通过与现场地表沉降监测结果对比,验证了此模型的合理性,确定了合理的开挖面压力取值范围。最后,进一步分析了实际盾构施工开挖面压力值与地表沉降值之间的规律,评价施工时设定的开挖面压力值的优劣。  相似文献   

8.
基于Peck公式的藏区公路隧道施工地面沉降预测   总被引:2,自引:0,他引:2  
在隧道施工中结合现场地表下沉量测实测数据,利用Peck公式进行地表沉降计算,反分析法确定沉降槽曲线最大沉降量和沉降槽宽度及关键参数,并对拟合参数进行了检验。比较修正了沉降槽宽度计算经验公式,给出青藏高原东南部地区Peck公式中沉降槽宽度系数的初步建议值,验证了适合我国藏区具体地质条件与施工手段的公路隧道地表沉降预测模型。研究表明:Peck公式适用于青藏高原地区公路山岭隧道施工地面沉降预测,隧道进口浅埋段施工引起的地表沉降曲线基本符合高斯分布规律,进口段埋深较浅地表沉降槽宽度越大,埋深越大沉降槽宽度越小。  相似文献   

9.
郭瑞  郑波  黎晨 《隧道建设》2019,39(4):601-608
为解决下穿隧道施工对既有高填土路堤的影响问题,依托成贵铁路大方隧道下穿杭瑞高速工程建立三维有限元模型,研究隧道施工对上覆地层位移影响、地表纵向变形特征以及下穿施工对地表各特征位置的主要影响范围。研究结果表明: 1)隧道下穿施工造成高填土路堤层发生显著沉降变形,上覆地层向隧道正中方向产生明显横向位移; 2)大方隧道下穿施工产生的地表纵向变形可划分为微变形区(洞口浅埋沉降区)、强变形区(高填土路堤沉降区)和弱变形区(地表沉降区)3个区域; 3)大方隧道施工分别开挖至洞口、挡墙和公路路面等特征位置时的地表纵向影响范围分别为开挖前方的75、52、65 m,在此影响范围内地层位移变化强烈; 4)拱顶动态沉降曲线均呈反“S”形特征。结合现场监测数据进行对比分析,得出模拟计算值与监测值变化趋势基本吻合,并最后给出相关施工建议措施。  相似文献   

10.
为深入了解富水软弱地层中浅埋暗挖隧道施工引起的地表沉降特征,以杭州紫之隧道北口浅埋暗挖段工程为依托,采用现场监测数据分析与数值模拟计算相结合的方法,分析地下水渗流作用对地表沉降的影响。分析结果表明:1)在地下水渗流作用下,横向和纵向地表沉降槽宽度系数的拟合值均大于文献中对黏土的建议值;2)在隧道施工过程中,地层孔压下降范围逐渐扩大,地下水渗流是沉降槽宽度增加的主要原因;3)地表沉降主要发生在隧道外侧起拱线处、与水平方向成45°+φ/2的斜线之间区域(φ为隧道上覆土层平均内摩擦角)。  相似文献   

11.
盾构隧道施工地表沉降数值分析研究   总被引:6,自引:1,他引:6  
隧道施工引起的地层损失所导致的地表沉降变形预测和控制,是隧道工程领域重要的研究课题之一。以盾构隧道开挖引起地表沉降变形为研究对象,采用有限元数值分析软件模拟盾构隧道施工过程,分析盾构隧道引起的土体应力场、位移场变化,对比分析不同的地层损失、不同的土体本构模型、土体排水和不排水条件下隧道施工引起的地袁沉降变形规律,并进行了不同影响因素的敏感性分析。结果表明,地表沉降槽近似正态分布曲线,地表沉降的主要影响因素依次为隧道埋深、内摩擦角、压缩模量、粘聚力和泊松比;提出了盾构隧道施工引起的地表沉降计算模型,并采取有针对性的措施来减少地表沉降,减小对周围环境的不良影响。  相似文献   

12.
张鹏  李志宏  曾聪  马保松 《隧道建设》2017,37(9):1120-1125
为了研究曲线顶管施工引起的地表变形,通过分析拱北隧道管幕工程曲线顶管现场实测数据,得出曲线顶管地表沉降槽的偏移曲线;在现有Peck和Loganathan地表变形计算公式的基础上,考虑曲线顶管与隧洞的相对位置对沉降槽偏移量的影响,得出经过沉降槽偏移修正的Peck和Loganathan地表变形预测公式。结果表明:1)曲线顶管施工引起的地表沉降槽曲线表现为非对称,最大沉降点可能出现在轨迹弯曲内侧,也可能偏向外侧;2)曲线顶管与隧洞相对位置引起的土体损失变化是造成沉降槽偏移的主要原因,相对位置与顶管穿越地层性质、顶进力、注浆压力和轨迹曲率半径等因素有关;3)修正的Peck公式可以较好地反映砂层和淤泥质土层中曲线顶管施工地面沉降槽偏移效应和最大沉降量。  相似文献   

13.
李鹏  李洋  高毅  于少辉  李应飞 《隧道建设》2019,39(11):1838-1847
为研究“CC工法”施工地表变形规律,依托实际项目,通过对施工过程中地表变形实际监测结果进行整理分析,采用线性回归分析的方法对数据进行拟合,总结本项目“CC工法”顶管隧道施工地表变形规律,将隧道上部覆土扰动分为3类,发现隧道掘进时地表变形呈先隆起后沉降的形态,最终地表总体表现为下沉形态;提出后掘隧道与先行隧道之间存在地表变形影响叠加区,对叠加区的范围和形态进行研究,并分析得出后掘隧道施工对先行隧道地表变形的影响程度;修正传统Peck沉降预测公式,引入地表损失量修正系数和沉降槽宽度修正系数,并验证修正系数的适用性。在此基础上总结影响“CC工法”顶管隧道施工地表变形的主要因素,并提出控制措施。  相似文献   

14.
吴精义  叶新丰  余鹏  田腾跃 《隧道建设》2020,40(10):1408-1416
PBA工法工序转换复杂,易引起地表沉降,不同地层条件下的沉降规律难以掌握。尤其在含水粉细砂地层等不良地质条件下的地表沉降难以控制,对周边环境造成一定安全隐患。为研究粉细砂地层PBA车站沉降规律,通过调研北京地铁粉细砂地层PBA车站分布情况,基于监控量测数据分析不同降水条件下PBA车站地表沉降规律,并依据有限元方法进行计算验证,研究表明: 1)大于相应地表沉降值的发生概率与地表最大沉降值的关系符合正态分布,有效降水和未有效降水车站地表最大沉降值分别为-85.31~-93.29 mm、-126.16~-131.35 mm,由数据拟合得出地表最大沉降值超过-60 mm的概率分别为53.30%、74.96%; 2)沉降变形主要发生在导洞施工及扣拱施工阶段(约占90%),上导洞施工、下导洞施工、梁柱体系施工、扣拱施工阶段沉降比例约为4∶3∶1∶2; 3)沉降槽与Peck曲线趋近一致,沉降槽宽度系数在9.82~15.51 m,有效降水车站的沉降槽宽度系数比未有效降水车站的大3~5 m; 4)地层损失率普遍在0.56%~0.70%,沉降槽宽度参数受降水效果影响显著,普遍在0.51~0.89。研究结论可用于初步判断粉细砂层PBA车站的地表最大沉降。  相似文献   

15.
软硬不均地层盾构隧道纵向差异沉降相似模型试验研究   总被引:1,自引:0,他引:1  
陈晓坚 《隧道建设》2019,39(Z1):57-64
为探明不同海水水位、地层损失作用下穿越软硬不均地层盾构隧道结构纵向变形与发展,依托厦门地铁2号线跨海区间隧道工程,采用相似模型试验,以堆载模拟上覆水位荷载、漏砂法模拟下卧地层损失,分析上覆荷载、下卧地层损失下隧道沉降和曲率半径分布规律。结果表明: 1)上覆海水水位荷载下,隧道纵向沉降呈“勺形”分布,沉降过渡区范围为20环,原型长度为30 m; 2)随上覆荷载增大,沉降过渡区差异沉降呈二次函数增大,曲率半径呈指数形式减小,当上覆海水水位荷载为7.50 kPa时,原型水压为60 kPa(历史最高水位6 m),曲率半径最小,对应原型曲率半径为156 450 m,远大于《规范》控制值(15 000 m); 3)下卧地层损失下,隧道纵向沉降呈“高斯”分布,沉降槽范围为24环,原型长度为36 m; 4)随下卧地层损失增加,沉降槽差异沉降值呈三次函数关系增大,曲率半径呈三次函数关系减小,当地层损失率为4.57%时,原型沉降槽曲率半径达到《规范》规定控制值(15 000 m)。  相似文献   

16.
为了获得北京地区盾构隧道施工引起地层位移的实测资料,并分析不同布置下双线盾构隧道引起的沉降特征,以北京地铁8号线二期工程为依托,分别在双线盾构区间隧道的平行段和交叠段设置分层沉降监测断面,研究盾构施工引起的不同深度处地层沉降规律。分析表明:北京典型地层不同深度的沉降槽曲线可用高斯分布来描述,沉降槽宽度随深度的增加不断减小;不同深度处,盾构到达监测断面前、超过监测断面1倍埋深距离、后期沉降这3部分大致各占总沉降的1/3;对于双线交叠盾构隧道,当先开挖下面的隧道再掘进上面的隧道时,沉降槽整体变深;北京典型地层条件下(地下水位以上),不同深度处沉降槽对应的地层损失率基本不变;施工中,盾构停机会使地层损失率和沉降量明显增大。  相似文献   

17.
冯建霖 《隧道建设》2015,35(5):473-477
北京首都国际机场T3与T2航站楼之间的单层双跨连拱浅埋暗挖大断面隧道垂直下穿机场跑道,采用超长管幕下十导洞分步暗挖法施工。通过对隧道施工地表变形进行分析,得出以下结论:1)新建隧道施工地表最大沉降值平均为9.28 mm,控制变形情况良好,采用超长管幕保护浅埋暗挖施工技术切实可行;2)3个断面变形拟合得到的确定调节系数平均为0.951,地表变形符合Peck公式;3)变形拟合得到的K值平均为1.903,为北京地区常规数值的3~6倍,管幕的存在对新建隧道施工引起的地层变形具有阻隔及扩散作用;4)变形拟合得到的Vl值平均为0.201%,略低于北京地区常规施工方法水平。  相似文献   

18.
王炜 《城市道桥与防洪》2011,(7):186-189,16
随着城市地铁的持续建设,近接既有地下建筑进行施工的工程大量涌现。由于受地质条件和施工工艺的限制,隧道施工难免会对邻近建(构)筑物产生扰动,由此引发一系列的环境病害。该文针对过北京站至北京西站地下直径线的地铁近距离穿越某建筑结构,建立了三维有限元计算模型,研究了由于隧道施工而引起的地层扰动变形的规律性,并对已建隧道产生的施工影响进行了分析,且给出了相关的结论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号