首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 945 毫秒
1.
采用理论分析与数值仿真方法,建立了深厚软基区桥梁桩基础三维模型,选取软土厚度作为分析变量,计算分析了不同工况下桩基础的横轴向容许承载力、桩侧土抗力、桩身水平位移及桩身弯矩分布规律。研究结果表明:在软土侧向推力、汽车制动力及离心力作用下,深厚软基区桥梁桩基受力情况复杂;软土厚度超过10 m时,软土厚度对桩基横轴向容许承载力及桩侧土抗力影响很小,桩身第一水平位移零点随软土厚度增加逐渐上移,大于20m后趋于稳值;软土的存在增大了桩身最大弯矩,对桩身最大弯矩影响最大的软土厚度为5m;软土厚度大于10m后,桩身最大弯矩趋于稳值。  相似文献   

2.
依据西安市高新区某桩锚支护式深基坑支护桩内力和侧向位移的监测数据,对支护桩桩身内力与变形的变化规律进行了对比分析,得到了桩身弯矩和位移沿深度方向的分布。分析结果表明:随着基坑开挖深度的增加,支护桩的桩身弯矩值以及桩身向基坑内侧方向的位移不断增加,桩身弯矩最大值出现在基坑开挖底面以下,反弯点沿桩身向下移动。锚索锁定后对桩身内力与位移的作用显著,减小了桩身弯矩,限制了桩身位移的增加;空间效应在基坑开挖过程中,对桩身内力与位移产生影响,基坑中间支护位置桩身的最大弯矩值与位移值明显大于其他支护位置,分析结果可对基坑的进一步施工提供参考。  相似文献   

3.
《公路》2015,(8)
为了研究扩孔微型桩的受力性能,对5根具有不同扩孔参数的微型桩进行了室内足尺侧向受荷试验,分析了扩孔参数对微型桩桩身弯矩和侧向位移的影响得出,明显的桩身弯矩变化主要发生在第一个反弯点20 D(桩径)之前,且最大弯矩值出现在埋深6 D处;不同扩孔参数对桩身弯矩影响不明显;桩身侧向位移随着埋深的增加呈逐渐减小的趋势,且水平位移主要发生在埋深10 D内;扩孔后,微型桩在侧向荷载作用下更易变形。扩孔内填料越松散,扩孔孔径越大,桩身侧向位移越大。在埋深3 D~4.5 D扩孔深度内,扩孔深度对桩身侧向位移影响不明显。研究所得结论为研究微型桩的扩孔问题打下基础,并为整体式桥台桥梁支承桩的扩孔技术提供借鉴。  相似文献   

4.
采用弹塑性有限元计算方法,对堆积体滑坡中双排抗滑桩及其周围土体的受力及变形进行计算,对桩顶位移、桩身最大剪力、弯矩与滑体及滑床强度参数c,φ值的相互关系进行了参数敏感性分析。结果表明:双排抗滑桩的变形与受力,受滑体黏聚力的影响大,受其内摩擦角的影响小,而滑床的参数变化对双排桩的影响更小。  相似文献   

5.
以南通一船坞工程为例,通过现场试验分析水平荷载桩的受力特性,得出了在各级荷载作用下,桩顶水平位移与水平荷载之间的关系和桩身的位移、转角及弯矩分布规律。通过桩身应力测试。研究了水平荷载桩的应力分布规律。  相似文献   

6.
针对工程实际情况,采用有限元软件对路堑高边坡支护方案进行了边坡稳定性和变形、受力分析。在此基础上进行了桩间距的优化分析,明确了边坡的有效塑性区位置,得出了桩身水平位移的变化呈“7”字形变形,桩顶的水平位移值为13.5mm,最大水平位移值为15.3mm。同时通过对比分析是否施加锚索两种工况,明确了预应力锚索不仅有利于减小桩身的剪力值和弯矩值,还有利于桩身剪力值和弯矩值的均匀分布。最后对不同桩间距工况下边坡的稳定性进行了分析,得出合理的桩间距为4.5m。  相似文献   

7.
深基坑支护结构的受力、变形与其结构形式、尺寸、施工工艺及土层性质等因素有关。文中以深圳公常路下穿改造工程K1+800—930段基坑工程为例,采用弹性支点法,通过数值分析并与现场实测结果进行对比,分析支护桩长度、直径及间距等支护结构参数对支护桩桩身弯矩、水平位移的影响。结果表明,随着支护桩长度和直径的增加,桩身水平位移和弯矩减小,相对而言,桩长和桩径对桩身水平位移的影响较大,对桩身最大弯矩的影响较小;随着桩间距的增大,支护桩桩身水平位移和最大正、负弯矩均增大。  相似文献   

8.
倾斜荷载下桩柱式桥墩受力变形分析传递矩阵法   总被引:2,自引:1,他引:1  
为了研究倾斜荷载下桩柱式桥墩的受力变形特性,将其视为一工作整体,地面或局部冲刷线以上自由段视为置于虚拟土层中,根据桩(墩)身截面尺寸、混凝土强度等级以及土层情况等将桩柱式结构划分为若干分析单元段,基于Winkler弹性地基梁理论,考虑轴向和横向荷载共同作用,得到任一单元段的位移控制微分方程,并采用幂级数法进行解答。进而根据相邻单元段内力与位移连续条件得到了由柱顶受力与变形条件表示的桩柱式结构任一深度处水平位移、转角、弯矩及剪力的矩阵表达式。通过具体算例将提出的传递矩阵法所得结果与有限元等方法所得结果进行了比较。在此基础上,探讨分析了地基成层性对倾斜荷载作用下桩柱式结构体系内力与位移的影响。研究结果表明:表层土的物理力学性质及埋深对柱顶水平位移、地面处桩身水平位移及桩身最大弯矩值均有不同程度的影响。  相似文献   

9.
王羽  柴贺军 《公路工程》2015,(3):13-18,51
在给出模型相似比的基础上,确定一定比例试验模型与工程结构应力、应变关系、变形位移关系,将相似理论和模型试验的方法成功的应用于h式抗滑桩模型试验方案的设计.试验研究指出:在相同的荷载作用下,h式抗滑桩相对普通单桩桩身位移显著减小,前者只有后者的20%~25%,同时,h式抗滑桩最大弯矩仅为普通单桩30%,峰值均在滑面附近锚固段出现。h式抗滑桩实测应力值与理论计算值接近,并显示与理论计算相似的分布规律。此外,模型试验反映了不同桩底支承条件下,h式抗抗滑桩最大弯矩值与位移值的差异,为此类新型结构的设计提供了试验依据。  相似文献   

10.
为考察台后路堤荷载导致的地基软弱下卧层压缩和水平移动作用下的桥台桩基受力性状,建立了桥台桩基的三维有限元模型,验证了其合理性,并通过设置桩-土接触单元分析了桥头路基填筑对桥台桩基受力性状的影响.结果表明:由于桩的“遮拦效应”,前排桩桩-土“绕流”现象较后排桩更为明显;同时,桩的阻拦作用使桩周土体位移值较自由土场预测值偏小;桩-土相对位移较大时桩平均侧向压力与桩-土相对位移呈非线性关系;每级荷载下最大桩侧土压力约为路堤荷载的74%;路堤荷载大小与桩身最大弯矩值的关系与基桩所处位置有关,并非简单的双折线关系;在影响桩身弯矩因素中,软土层力学性质对桩身弯矩影响较桩身模量更为明显;桩在受轴向力和侧向力耦合作用下,桩基础的承载力会有所提高,但不明显.  相似文献   

11.
为了深入研究侧向受荷桩的承载特性及抵抗变形的能力,结合实际工程中天然土体的成层特性,开展了侧向受荷桩的室内模型试验,研究了不同粒径土层厚度及相对密实度对桩土相互动态耦合作用的影响,并结合PIV图像技术,分析了桩周土体位移场的发展趋势,为水平受荷桩的设计提供了理论依据。试验结果表明:①土体刚度与较小粒径土层的厚度呈正相关关系,而较大粒径砂土层厚的增加则对整个桩土体系的刚度产生了弱化作用;②当桩顶位移相同时,随着较小粒径砂土层厚的增大以及相对密实度的提高,土抗力随之增大,在深度为5~6倍桩径范围内达到最大值,且相对密实度对土抗力的影响更大;③水平受荷桩的桩前和桩后砂土表面均形成了一个纺锤形的位移影响区域,且此区域与水平加载方向的最大夹角随土层条件和相对密实度的变化很小,其值均为45°左右;④在相同的桩顶荷载下,砂土相对密实度的增大约束了桩体的运动趋势,使得桩体的水平位移减小,例如,当桩顶荷载均为30 N,密实度为0.5时桩前砂土的最大位移影响范围比密实度为0.3时普遍减少了约1倍桩径的距离;⑤桩身弯矩值随着较小粒径土层厚度的增大而增大,最大弯矩约出现在0.15 m深度(5倍桩径)处;随着砂土相对密实度的提高,桩身弯矩也逐渐增大,最大弯矩所在的位置逐渐上移。  相似文献   

12.
窦成功  王宁 《隧道建设》2019,39(Z1):176-179
为了研究盾构切桩掘进对新托换桩的影响,以南昌地铁2号线某盾构切桩工程为背景,运用ABAQUS有限元软件建立三维实体模型,分析施工过程中新托换桩位移和弯矩变化情况。设置切除旧桩前、刚切除旧桩后以及切除旧桩并向前掘进一定距离3种工况,提取3种工况下新托换桩的变形和弯矩进行分析,进而对直接盾构切桩掘进方案的合理性进行评价。计算结果表明: 1)盾构掘进切除旧桩造成托换桩垂直于隧道轴线方向的最大变形发生在隧道上方约2.5 m处,沿隧道轴线方向的最大变形发生在桩顶; 2)托换桩桩身最大弯矩出现在隧道断面深度范围内,最大值可达到600 kN·m以上,因此桩基设计时,不仅要进行正截面受压承载力验算,还需进行受弯承载力验算。  相似文献   

13.
倾斜软基上修建高速公路(铁路)时,地基容易出现差异沉降、滑移甚至垮塌。提出坡脚斜直桩组合结构+桩体复合地基加固倾斜软基,采用模型试验,对比测试倾斜软基上桩体复合地基受压时,坡脚处插入硬层的双单桩、双直桩组合结构以及斜直桩组合结构的桩侧土压力、桩身应变和外侧桩水平位移,揭示倾斜软基上插入硬层的斜直桩组合结构单侧受力变形机制与破坏模式,为倾斜软基上斜直桩组合结构的设计提供试验依据。结果表明:①内、外侧桩在桩身中部偏上位置呈现桩侧土压力峰值;外侧桩倾斜度增大,其桩侧土压力峰值快速减小,内侧桩桩侧土压力大于外侧桩;②外侧桩在桩身中部偏上位置呈现侧移峰值,桩顶嵌固连梁外侧桩的桩身水平位移及其峰值均随倾斜度增大而减小,总是小于桩顶自由的外侧桩,峰值位置也较低;③桩身中上部出现弯矩峰值,外侧桩弯矩峰值位置略低,外侧桩倾斜度增大导致内侧桩弯矩增大、外侧桩弯矩减小;④单侧受载时,斜直桩发生水平位移,随后弯曲变形,内侧桩率先破坏、外侧桩后破坏,具有关联性,而双直桩的破坏荷载介于斜直桩的内侧桩和外侧桩之间。加大内侧桩的抗弯刚度和外侧桩的倾斜度将大幅度提高斜直桩组合结构的整体稳定性。工程中,建议外侧桩倾斜度为10%~20%,并根据路堤高度(荷载)选择内侧桩与外侧桩刚度之比大于2。  相似文献   

14.
为研究滑坡体强度参数变化对双排抗滑桩位移、内力分布以及前后排桩承担滑坡推力比例的影响,采用三维有限元分析模型,对滑坡体强度参数进行单因素分析。结果表明:改变滑坡体c,φ值对双排抗滑桩桩身弯矩和剪力最大值有影响,而对弯矩和剪力分布影响较小;对桩位移、内力以及前后排桩承担滑坡推力比例,c,φ值较小时,影响越明显,并随着c,φ值的增大,影响逐渐减小,且φ值比c值的影响更明显。  相似文献   

15.
单桩水平承载性能研究   总被引:2,自引:1,他引:1       下载免费PDF全文
通过室内模型试验分析水平承载单桩的受力特性,得出荷载位移关系曲线和各级荷载作用下弯矩、剪力、土抗力及p-y曲线沿桩身的分布规律。由试验中力作用点的荷载位移导出各级荷载作用下的m值,用于计算各级荷载下桩身内力,方法实质是非线性解法。文中将其结果与实测结果进行了对比。  相似文献   

16.
田海光 《隧道建设》2015,35(7):635-641
以青岛地铁3号线五四广场站为研究对象,对土岩组合地层地区的吊脚桩设计要点进行研究。通过数模模拟,对土岩组合地层中"吊脚桩"基坑的支护体系变形及内力、"吊脚桩"嵌岩深度与预留岩肩宽度的关系进行了分析,并对有竖向荷载的"吊脚桩"进行了研究。研究表明:1)随着开挖深度的增加及锚杆的施工,预应力锁脚锚杆对吊脚桩桩底水平位移的控制作用明显。2)随着嵌岩深度和肩岩宽度的增加,吊脚桩桩身最大水平位移呈减小趋势,嵌岩深度取2.0 m,岩肩宽度取1.5 m较为合理。3)由于桩脚嵌入中风化花岗岩,桩顶位移不受竖向荷载控制,仅随开挖深度增加而明显增加;桩身弯矩稍有增大,但变化值极小。  相似文献   

17.
倾斜桩能够提高排桩水平承载力,而长短桩依据桩身弯矩分布减小部分支护桩的桩长,以充分利用支护桩承载力,将两者结合可形成倾斜长短桩。为研究倾斜长短桩作为基坑围护结构时的变形受力特性,通过常规室内砂土模型试验,分析倾斜长桩倾斜角度和长短桩配比的影响。试验结果显示: 1)对比等长长桩,倾斜长短桩能够在减小总桩长时,更有效地控制支护结构变形和桩身弯矩; 2)对于倾斜长短桩而言,在倾斜桩倾斜角度为0°~20°时,其支护效果随着倾斜角度增大而提高; 3)倾斜长短桩的桩身弯矩会随着倾斜角度增大而减小,且开挖面以下弯矩减小幅度更大; 4)倾斜长短桩中,长桩与短桩在开挖面以上弯矩相近,开挖面以下长桩弯矩显著大于短桩弯矩; 5)短桩占比越大,支护效果越弱,桩身弯矩越大。  相似文献   

18.
为揭示黄土公路高陡边坡的稳定性状,选取黄土塬开挖平台非扰动黄土为试样,制作试样模型进行原位试样直接剪切试验,设计进行不同工况下埋入式与悬臂式抗滑桩模型试验,研究获取公路路堑边坡黄土土样应力-应变关系曲线、土样峰值强度及残余强度参数变化规律,并基于支挡抗滑桩和黄土边坡坡体内受力与变形状态,揭示桩-土相互作用过程与变形机理。试验结果表明:黄土试样在直接剪切时,随着法向应力增大,其应力-应变关系曲线逐渐由软化型向硬化型转变,且曲线逐步升高但未出现交叠;相同的剪切次数下,黄土试样峰值强度和残余强度均随法向应力增大而增大,残余强度较峰值强度有一定衰减,且垂直强度愈大,衰减愈明显;随着水平推力达到极限承载力,埋入式模型抗滑桩桩身土压力分布呈现上大下小的变化趋势,且在滑动面位置上部附近出现桩前最大土压力,桩体发生弹性变形,弯矩值沿桩身分布总体呈"S"形规律;悬臂式桩体不发生刚性转动,桩身土压力总体呈上下小、中间大的分布态势,桩后最大土压力出现在滑动面附近,而桩前最大土压力则随着现场试验中单排模型桩根数增多,自模拟滑动面逐渐过渡到新的剪出滑动面,桩身弯矩呈"D"形分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号