首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
车速的合理选择,是影响弯道行车安全的关键.为此,针对车辆在弯道行驶过程中因超速导致的侧滑、侧翻等侧向失稳事故,通过建立车辆转向行驶动力学模型,结合道路环境信息,在分析车辆转向时载荷横向偏移、悬架变形等基础之上,对传统模型进行改进,建立精度更高的弯道安全车速计算模型.并采用车辆动力学仿真软件CarSim和TruckSim进行不同工况下的仿真试验验证.运用正交试验方法对试验结果进行极差和方差分析,获取弯道安全车速对7种主要影响因素的敏感度.结果表明,该模型所得的安全车速值,与车辆侧向失稳时的临界车速值之间的平均误差为1.55%;相比于其他因素,弯道半径和路面附着系数对安全车速的影响最为显著;当路面附着系数达到特定值时,模型考虑了车辆的侧翻危险,使其计算得到的弯道安全车速呈现饱和现象.   相似文献   

2.
为提升半挂汽车列车在高速公路弯道下坡路段的运行安全,采用TruckSim仿真软件,构建了车辆模型、道路模型和驾驶人动力学仿真模型;基于蒙特卡罗可靠性分析法,分别建立了半挂汽车列车发生侧滑失效、侧翻失效、折叠失效和系统失效的功能函数,并选取设计速度80 km·h~(-1)的高速公路为研究路段,通过进行大量车辆动力学仿真试验,对不同圆曲线半径、纵坡坡度、路面附着系数、车速和车辆总质量对半挂汽车列车的运行安全的影响进行了数值分析。研究结果表明:半挂汽车列车发生侧滑和侧翻的概率随着圆曲线半径的增加而显著降低,在一般最小半径400 m的情况下,半挂汽车列车发生侧滑失效和侧翻失效的概率趋近于0;随着下坡坡度的增加,半挂汽车列车发生侧滑失效和侧翻失效的概率基本呈线性增长趋势;车速对于半挂汽车列车运行安全的影响尤为显著,当车速均值由60 km·h~(-1)增加到90 km·h~(-1)时,发生侧滑失效和侧翻失效的概率分别增加了634倍和336倍;车辆总质量的增加对半挂汽车列车侧翻有显著影响;在路面附着系数较低的条件下,半挂汽车列车的主要事故形态为侧滑和折叠,在路面附着系数较高的情况下,半挂汽车列车的主要事故形态为侧翻。因此,在道路设计中,应避免极限最小半径与陡坡组合,严格限速和限载可确保半挂汽车列车的运行安全性能。  相似文献   

3.
为提升半挂汽车列车在高速公路弯道下坡路段的运行安全,采用TruckSim仿真软件,构建了车辆模型、道路模型和驾驶人动力学仿真模型;基于蒙特卡罗可靠性分析法,分别建立了半挂汽车列车发生侧滑失效、侧翻失效、折叠失效和系统失效的功能函数,并选取设计速度80 km·h-1的高速公路为研究路段,通过进行大量车辆动力学仿真试验,对不同圆曲线半径、纵坡坡度、路面附着系数、车速和车辆总质量对半挂汽车列车的运行安全的影响进行了数值分析。研究结果表明:半挂汽车列车发生侧滑和侧翻的概率随着圆曲线半径的增加而显著降低,在一般最小半径400 m的情况下,半挂汽车列车发生侧滑失效和侧翻失效的概率趋近于0;随着下坡坡度的增加,半挂汽车列车发生侧滑失效和侧翻失效的概率基本呈线性增长趋势;车速对于半挂汽车列车运行安全的影响尤为显著,当车速均值由60 km·h-1增加到90 km·h-1时,发生侧滑失效和侧翻失效的概率分别增加了634倍和336倍;车辆总质量的增加对半挂汽车列车侧翻有显著影响;在路面附着系数较低的条件下,半挂汽车列车的主要事故形态为侧滑和折叠,在路面附着系数较高的情况下,半挂汽车列车的主要事故形态为侧翻。因此,在道路设计中,应避免极限最小半径与陡坡组合,严格限速和限载可确保半挂汽车列车的运行安全性能。  相似文献   

4.
车辆在附着系数较小的圆曲线路段转向时,轮胎会处于非线性区内工作,此时基于线性理论的侧向稳定性分析方法会产生较大误差。建立6自由度非线性车辆系统模型,分析其处于非线性域与线性域下不同的特性状态,得到不同车速、路面附着系数下使车辆系统处于临界状态的圆曲线路段半径、超高设计指标。对线性域与非线性域内的车辆系统分别采用基于线性理论的根轨迹法与基于非线性理论的相平面法分析侧向稳定性,得到综合考虑2种状态下车辆临界失稳状态的圆曲线路段指标。结果表明,车速为60 km/h,路面附着系数为0.24,超高小于6% 时,车辆发生侧向失稳时轮胎处于非线性域,此时使用相平面法分析得到侧向失稳临界指标;车速为60 km/h,路面附着系数为大于0.4,超高处于4%到10%之间时,车辆发生侧向失稳时轮胎处于线性域,此时使用根轨迹法分析得到侧向失稳临界指标。   相似文献   

5.
平曲线路段是交通事故高发之处。文中从车、路协同作用对车辆弯道行驶安全性的影响入手,分析了车、路中对弯道行驶安全性可能产生影响的因素,探究不同参数车辆与弯道组合下安全车速的限值。应用TruckSim建立车路耦合模型,通过仿真定性分析了各因素对车辆弯道行驶安全的影响;对不同车、路参数进行正交仿真试验,得出相应临界车速;再利用SPSS对试验结果进行方差分析,筛选出主要影响因素,并对其进行回归分析,建立其与安全车速之间的数学模型,用于计算车辆弯道行驶安全速度,指导车辆和道路设计。  相似文献   

6.
为了研究路面状况及使用年限对道路纵向附着系数的影响,通过对不同年限、不同干湿状况的路面进行测试纵向附着系数,建立了基于模糊神经网络道路纵向附着系数预测模型,并通过实车制动试验进行验证。试验结果表明:预测模型误差率小于6%,实车制动试验制动车速与实际车速误差也在6%内,验证了模型的有效性和实用性。因此,为交通事故再现提供了一个快速有效的方法。  相似文献   

7.
重型半挂车ADAMS建模及极限工况仿真   总被引:1,自引:0,他引:1  
在ADAMS/car下建立重型半挂车模型,并选取双移线这一典型工况.在不同附着系数路面上对极限工况下重型半挂车在不同车速时的侧翻,折叠和挂车摆振问题进行了稳定机理分析.结果表明,重型半挂车辆在附着系数较高的良好路面上容易发牛侧倾失稳,而在附着系数较低的湿滑路面上则更容易发生横摆和折叠失稳.提出了相应的改进措施.  相似文献   

8.
为了在不同工况中,同时兼顾轨迹跟踪算法的跟踪精度,计算速度与车辆稳定性,提出基于不同车速和路面附着系数的参数自适应MPC算法。在线性时变MPC的基础上增加车辆稳定性控制,并基于路面附着系数设计2种控制策略:在高附着系数路面,针对不同车速优化预测时域与控制时域;在低附着系数路面,开启车辆稳定性控制并基于改进粒子群算法优化权重参数。2种策略在保证跟踪精度与车辆稳定性的基础上提高计算速度。设计基于前馈神经网络的路面识别算法从而为多参数自适应轨迹跟踪算法识别所在道路的路面附着系数,利用CarSim-Simulink平台进行联合仿真。研究结果表明:路面识别算法的平均绝对百分比误差为12.77%,足够满足多参数自适应轨迹跟踪算法的需求;相较于传统线性时变MPC跟踪算法,低速工况下参数自适应轨迹跟踪算法在高附着系数和低附着系数的路面上,横向平均绝对误差分别降低了20.7%和24.6%;高速工况下横向平均绝对误差分别降低了66.2%和50.7%;综合所有试验,算法的计算时间减少了40.2%;在保障车辆稳定性的同时降低算法的计算时间。研究成果针对不同车速与附着系数对轨迹跟踪算法参数进行优化,利用自适应预...  相似文献   

9.
《公路》2015,(4)
为了提高大型车在高速公路弯道行驶的安全性,分析了大型车在弯道路段发生交通事故的统计特性,确定了大型车在弯道行驶横向稳定性的研究范畴为侧滑和侧翻,并给出了刚性车辆、带悬架车辆的准静态侧翻极限车速以及瞬态侧翻极限车速的计算方法。最后从实际调查、视距模型和VISSIM仿真三个方面研究了大型车在弯道行驶的安全车速,对其结果进行对比分析,得出了大型车在不同弯道半径条件下的限速建议值。研究结果表明:当弯道半径R分别为1 000m、650m、500m、400m、300m、200m时,建议限速值分别为75km/h、65km/h、60km/h、55km/h、45km/h、35km/h,为提高大型车的弯道安全性提供了理论依据。  相似文献   

10.
为了研究路面平整度对车辆侧滑和侧翻临界风速的影响,建立了二自由度车辆振动模型,依据路面平整度指标和路面功率谱密度之间的关系,利用傅里叶变换推导了基于公路工程技术标准的动荷载系数计算公式,在此基础上根据车辆运动模型推导了车辆侧滑和侧翻的临界风速计算公式,利用MATLAB编制了计算程序,以典型货车为例计算了考虑路面平整度影响和不考虑路面平整度影响的车辆侧滑、侧翻临界风速.研究结果表明:路面摩擦系数,车辆速度和路面平整度对车辆侧滑临界风速都有一定的影响;考虑路面平整度影响时,典型货车临界侧滑和侧翻风速都会相应降低,降低幅度为1 ~2 m/s.  相似文献   

11.
针对智能车辆纵向运动时的交通道路适应性问题,考虑路面附着系数和前车运动速度等因素,研究了智能车辆纵向运动决策与控制方法。论文研究了基于车头时距的纵向运动决策方法并建立不同驾驶行为的目标车速模型,运用变论域模糊推理算法设计了目标加速度模型。基于纵向动力学模型,运用自适应反演滑模控制算法建立了驱动控制器和制动控制器。对高附着系数路面和低附着系数路面的行驶工况进行仿真试验验证,结果表明,在不同的附着系数路面和前车变速行驶条件下,智能车辆能实时、合理地决策目标车速、目标加速度,实现安全、高效、稳定的跟驰。  相似文献   

12.
为改善现有路面辨识方法,兼顾其准确性和实时性,在Burckhardt轮胎-路面数学模型的基础上,基于类比特性提出了快速准确的路面辨识算法,能实时计算汽车当前行驶路面的峰值附着系数。通过Car Sim软件建立整车模型,并测试了路面峰值附着系数,验证路面-轮胎模型。利用Burckhardt轮胎模型验证算法的有效性和可行性,再分别在单一路面和对接路面上进行Car Sim/Simulink联合仿真。结果表明,该算法能快速准确地计算出路面峰值附着系数,滞后仅0.1s,误差在5%左右。该辨识算法可同时兼顾准确性和实时性,且适用路面范围广。  相似文献   

13.
对传统的电动助力转向系统,当车辆在低附着系数路面上转向时,转向阻力矩会大幅降低,容易导致车辆侧滑甚至侧翻,因此助力控制必须考虑附着系数的影响。本文中在建立了整车动力学模型和Dugoff轮胎模型的基础上,利用横摆角速度和轮速实时估算出当前的附着系数,并据此设计了电流补偿助力模糊控制器。在MATLAB/Simulink环境下构建了系统的仿真模型并进行仿真。结果表明,在低附着系数路面上,该控制策略可在保证转向轻便性的前提下提高驾驶员的转向力矩,且附着系数越小或车速越高,转向力矩增加的程度越大,有效地防止了车辆转向过度,提高了路感。  相似文献   

14.
受弯道离心力影响,在弯道处车辆易发生侧滑和侧翻,山区道路转弯车道为交通事故高发区.车辆自动减速系统运用ITS技术自动控制车辆,使其能以安全车速通过弯道,避免交通事故发生.阐述车辆在转弯道处的运行机理,并对其在直线路段和曲线路段的运行情况分别建立数学模型,且对模型进行解析,以展现车辆自动减速系统的控制过程.通过对数学模型...  相似文献   

15.
针对模型预测控制(MPC)路径跟踪控制器在不同路面附着系数及车速下跟踪误差大的问题,提出了基于粒子群寻优(PSO)-反向传播(BP)神经网络优化MPC的无人驾驶汽车路径跟踪控制策略。首先,设计了MPC路径跟踪控制器;其次,利用PSO-BP对MPC进行优化,以控制器精度和车辆稳定性作为评价函数,获得PSO离线最优时域参数;最后,选择4种工况进行双移线跟踪对比仿真验证。结果表明:所提出的控制策略在保证行驶稳定性的条件下,低路面附着系数低速、高路面附着系数低速、高路面附着系数高速及中路面附着系数中速工况下双移线跟踪横向控制精度分别提高了50%、55%、9%和20%。  相似文献   

16.
在冰雪路上行车时,由于路面纵向和侧向附着系数小,汽车的制动距离长,制动时方向稳定性差,弯道行驶临界车速低。冰雪路影响驾驶人的生理和心理机能,易导致车祸。因此驾驶人在冰雪路上行车应把握如下要点。  相似文献   

17.
为提高车辆在弯道路段的行驶安全性,在分析弯道路段事故形态的基础上,提出弯道行驶安全性评价指标.同时,从车辆侧向稳定性分析角度,建立道路圆曲线半径与弯道路段行驶安全性的定量关系.通过TruckSim与Simulink的联合仿真实验,利用3种典型的弯道行驶工况,对现行规范中规定的标准弯道的行驶安全性进行评价.结果表明:道路圆曲线半径与车辆侧向稳定性呈正相关,车速与其呈负相关.在给定实验工况下,车速为120 km/h,圆曲线半径为500 m时,侧向加速度超过0.4g,横向载荷转移率达到0.7,车辆极易发生侧滑/侧翻;而当车速为40 km/h,圆曲线半径低于60m时,车辆动态响应的幅度虽有所增加,但车辆并不会发生侧滑与侧翻现象.   相似文献   

18.
为加深对互通立交小半径匝道的行车安全性和匝道超高之间关系的认知,综合天气,道路线形等因素,利用行车动力学仿真软件建立小半径环形匝道仿真模型,选取车辆的临界附着系数和横向荷载转移率为侧滑和侧翻风险指标,通过改变超高e值,分别分析了不同天气条件下大货车在小半径匝道段行车的侧滑和侧翻风险。研究结果表明:《公路立体交叉设计细则》中规定的匝道圆曲线半径最大值为8%,当因工程特殊性采用最大值时,在晴天路面干燥或雨天路面湿滑等条件下,大货车侧滑,侧翻危险性均较低,但横向力系数较大,驾驶员及乘客有车辆行驶不稳定,有倾覆的危险感的心理活动;当在路面积雪的车辆行驶条件下,e=7%和e=8%对应的路段侧滑风险较大,但当超高值增大至9%时,小客车侧滑风险显著降低。  相似文献   

19.
在交通事故鉴定中,车辆行驶速度是事故处理和诉讼的重要依据。其中,路面附着系数是事故车速鉴定的重要参数。本文在大量实验数据基础上,拟合出车辆制动过程的特性曲线,并简化出相应的车速估算模型。利用此模型对不同车型、路面类型、湿滑状况和不同车速情况下的路面附着系数e进行了估算研究。经估算实例验证,文中的估算方法对不同状况下的路面附着系数具有较好的估算能力。  相似文献   

20.
为保证车辆弯道行驶的安全,综合考虑影响车辆行驶安全的人、车、路和环境等因素,运用层次分析法和加权最小平方法建立多层次车辆弯道行驶安全度静态因素综合评价体系。基于车辆动力学理论分析车辆弯道行驶临界车速,通过引入安全系数k,将车辆弯道行驶安全度评价模型与临界车速结合,提出基于人车路协同的车辆弯道安全车速预测模型。仿真结果分析表明,该模型可预测车辆弯道行驶安全车速,为车辆弯道车速预警提供一种方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号