首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
为改善车辆动态性能,设计一种双气室液压互联悬架系统.结合结构特征建立双气室液压互联悬架模型,得到包含该模型的整车动力学模型,并利用蛇行试验结果进行验证.将分别装有双气室、单气室的液压互联悬架与原机械悬架的整车模型在不同运动模态下进行仿真,对比分析三者对车辆悬架系统刚度与阻尼特性的影响,并在时域和频域分析三者对车辆响应的...  相似文献   

2.
考虑气液混合流体时变特性的阀片式液压互联悬架建模   总被引:1,自引:0,他引:1  
针对液压互联悬架中气液混合流体对悬架系统特性的影响,推导了气液混合流体物理性质的时变特性模型,提出一种非线性形变修正函数,用以修正所建立的阻尼阀阀片变形等效模型,从而建立了一种考虑气液混合流体时变特性的阀片式单缸液压互联悬架非线性动力学模型,并通过台架试验加以验证。仿真结果表明:气液混合流体时变特性会导致液压互联悬架系统阻尼特性曲线出现明显的“迟滞”现象,并降低阻尼力的峰值,与试验结果对比显示,所提出的建模方法能准确描述“迟滞”现象,且与台架试验结果基本吻合。  相似文献   

3.
采用基于Routh稳定判据的Pade逼近法对被动天棚阻尼悬架系统进行降阶,寻找阶次低、元件少的ISD悬架结构。建立四分之一悬架模型,运用统一目标函数的遗传算法优化结构的参数,对比分析了传统被动、被动天棚阻尼和降阶ISD三种悬架系统的性能。结果表明,与被动天棚阻尼悬架相比,降阶ISD悬架的车身加速度、轮胎动载荷和悬架动行程均方根值都不同程度逼近被动天棚阻尼悬架,能够实现被动天棚阻尼悬架的主要性能,说明经降阶优化的ISD悬架综合性能可以接近被动天棚阻尼悬架,研究结果从理论上验证了基于Routh稳定判据的Pade逼近法的有效性。  相似文献   

4.
豆力  雍文亮  居刚  李海波 《北京汽车》2013,(2):29-32,40
车辆悬架系统的阻尼决定车辆悬架的特性,对车辆行驶平顺性和安全性具有重要影响。为了设计车辆的最佳减振器,利用悬架系统的最佳阻尼比,分析前后悬架系统减振器最佳阻尼系数,建立减振器最佳速度特性数学模型。利用多体动力学软件ADAMS/Car模块建立了重型牵引车整车刚柔耦合多体动力学模型,进行整车平顺性仿真分析和悬架系统动力学仿真。匹配结果表明,对该悬架系统,减振器所做的匹配设计是正确有效的,改善了悬架系统的运动特性和整车平顺性。  相似文献   

5.
基于多体系统动力学的微型客车操纵稳定性DOE优化设计   总被引:1,自引:0,他引:1  
利用多体系统动力学软件ADAMS建立了某微型客车动力学模型,并应用该模型对整车操纵稳定性进行了仿真分析.结合仿真数据利用ADAMS/Insight模块对前、后悬架系统中的刚度和阻尼进行了正交DOE优化,通过对优化结果的分析提出前、后悬架系统刚度值和阻尼值的3组合理匹配组合,最后通过3种组合在试验样车上的主观评价结果确定了前、后悬架刚度值和阻尼值.  相似文献   

6.
鉴于传统车辆的悬架系统所配的前、后横向稳定杆,往往不能兼顾操纵稳定性和越野性能,本文中提出了一种液压互联悬架,分别建立了安装横向稳定杆和安装液压互联悬架的整车动力学模型,设计并开发出液压互联悬架功能样车。基于动力学模型和功能样车进行仿真和试验,分析了在扭曲模态下,车身附加扭矩和车轮垂向载荷的变化。仿真和试验结果基本吻合,表明液压互联悬架系统能提高车辆侧倾稳定性,且不会额外增加车身承受的扭矩;同时,4个车轮的垂向载荷分布更加均匀,进一步提高了车辆的越野性能。  相似文献   

7.
在考虑摩擦、马达阻尼力以及流动压力损失的影响下,研究非线性对液压式惯容器-弹簧-阻尼(ISD)悬架性能的影响。文章建立了两级串联式非线性液压ISD悬架的整车模型,分析了飞轮转动惯量、马达排量、油液实际作用面积以及回流管等效长度这四个非线性参数对液压ISD悬架性能的影响,在仿真的基础上,进行了液压ISD悬架的整车台架试验研究,验证了非线性模型的正确性。研究结果可建立精确的非线性液压ISD悬架系统模型,为进一步提高主动、半主动ISD悬架的控制的有效性提供了支撑。  相似文献   

8.
以1/2车辆被动悬架系统为基本模型,构建了一种带"天棚"阻尼的1/2车辆主动悬架系统;推导出基于LQR设计的该系统的动力学方程,应用MATLAB/Simulink软件建立该系统的仿真模型,为其他控制策略提供理想的参考模型;通过与1/2车辆被动悬架系统仿真结果的比较,验证了该控制方法的有效性.  相似文献   

9.
客车因载质量大和质心高的特点难以兼顾操纵稳定性和平顺性,为此本文提出了一种侧倾构型的液压互联悬架(RHIS)与电控空气悬架(ECAS)相结合的新型悬架系统。首先,基于热力学理论建立了空气弹簧非线性模型并试验验证;基于质心定理、动量矩定理推导了整车9自由度动力学模型,建立了整车和RHIS的机械-液压耦合模型,并通过实车测试验证了模型;然后,设计了气囊模糊控制器以实现车身高度调节;最后,在常用的操纵稳定性和平顺性测试工况下仿真对比了新型和传统悬架系统的性能。结果表明,所提出的新型悬架系统可实现3挡车身高度调节,且在保持原车平顺性的同时明显改善了整车的操纵稳定性。  相似文献   

10.
针对八自由度整车悬架模型,以改进天棚阻尼系统为参考模型,运用模糊滑模控制方法设计了半主动整车悬架的模糊滑模控制器;将滑模切换函数及其导数进行滑模控制量划分,形成二维模糊控制规则表,以此来提高系统控制的灵敏度,并降低系统的抖振;将整车分块成四部分,对每个版块进行独立控制,使系统具有滑模特点同时也能克服抖振,最后利用李亚普诺夫方法来保证系统的稳定性。仿真结果表明,模糊滑模控制整车半主动悬架的减振效果优于被动控制和PID控制的悬架,且具有很好的稳定性。  相似文献   

11.
针对车辆减少能量消耗与提高抗侧倾能力需求,提出了一种主/被动可切换的液压互联悬架抗侧倾控制方法。基于9自由度车辆动力学模型,考虑蓄能器、液压缸、液压泵三者之间耦合的体积-流量-压力特性,建立液压互联悬架主动控制时域模型;结合"车身侧倾角-车身侧倾角速度"相平面法及车辆侧向加速度,得到车辆侧倾稳定域,并提出液压互联悬架系统侧倾稳定性控制介入与退出判据;在此基础上,采用Backstepping非线性控制算法设计主动液压互联抗侧倾控制器。最后,分析并改进侧倾稳定性评价指标,通过在MATLAB/Simulink环境下进行高速双移线、鱼钩试验等极端工况数值仿真,验证所提出的液压互联悬架主/被动切换控制系统能在减少能量消耗的情况下能否提高车辆抗侧翻的能力。研究结果表明:所提出的控制系统能有效提高车辆抗侧翻能力;当车辆侧倾状态超出设定的侧倾稳定区域介入线时,液压互联悬架系统由被动模式切换为主动抗侧倾模式,控制车辆侧倾状态回到稳定区域,以提高车辆侧倾稳定性;当判定车辆侧倾状态满足主动控制退出条件时,液压互联悬架系统回到被动模式,以减小能量消耗。  相似文献   

12.
In this paper, a roll and pitch independently tuned hydraulically interconnected passive suspension is presented. Due to decoupling of vibration modes and the improved lateral and longitudinal stability, the stiffness of individual suspension spring can be reduced for improving ride comfort and road grip. A generalised 14 degree-of-freedom nonlinear vehicle model with anti-roll bars is established to investigate the vehicle ride and handling dynamic responses. The nonlinear fluidic model of the hydraulically interconnected suspension is developed and integrated with the full vehicle model to investigate the anti-roll and anti-pitch characteristics. Time domain analysis of the vehicle model with the proposed suspension is conducted under different road excitations and steering/braking manoeuvres. The dynamic responses are compared with conventional suspensions to demonstrate the potential of enhanced ride and handling performance. The results illustrate the model-decoupling property of the hydraulically interconnected system. The anti-roll and anti-pitch performance could be tuned independently by the interconnected systems. With the improved anti-roll and anti-pitch characteristics, the bounce stiffness and ride damping can be optimised for better ride comfort and tyre grip.  相似文献   

13.
This paper studies the use of the least damping ratio among system poles as a performance metric in passive vehicle suspensions. Methods are developed which allow optimal solutions to be computed in terms of non-dimensional quantities in a quarter-car vehicle model. Solutions are provided in graphical form for convenient use across vehicle types. Three suspension arrangements are studied: the standard suspension involving a parallel spring and damper and two further suspension arrangements involving an inerter. The key parameters for the optimal solutions are the ratios of unsprung mass to sprung mass and suspension static stiffness to tyre vertical stiffness. A discussion is provided of performance trends in terms of the key parameters. A comparison is made with the optimisation of ride comfort and tyre grip metrics for various vehicle types.  相似文献   

14.
Passive fluidically coupled suspensions have been considered to offer a promising alternative solution to the challenging design of a vehicle suspension system. A theoretical foundation, however, has not been established for fluidically coupled suspension to facilitate its broad applications to various vehicles. The first part of this study investigates the fundamental issues related to feasibility and properties of the passive, full-vehicle interconnected, hydro-pneumatic suspension configurations using both analytical and simulation techniques. Layouts of various interconnected suspension configurations are illustrated based on two novel hydro-pneumatic suspension strut designs, both of which provide a compact design with a considerably large effective working area. A simplified measure, vehicle property index, is proposed to permit a preliminary evaluation of different interconnected suspension configurations using qualitative scaling of the bounce-, roll-, pitch- and warp-mode stiffness properties. Analytical formulations for the properties of unconnected and three selected X-coupled suspension configurations are derived, and simulation results are obtained to illustrate their relative stiffness and damping properties in the bounce, roll, pitch and warp modes. The superior design flexibility feature of the interconnected hydro-pneumatic suspension is also discussed through sensitivity analysis of a design parameter, namely the annular piston area of the strut. The results demonstrate that a full-vehicle interconnected hydro-pneumatic suspension could provide enhanced roll- and pitch-mode stiffness and damping, while retaining the soft bounce- and warp-mode properties. Such an interconnected suspension thus offers considerable potential in realising enhanced decoupling among the different suspension modes.  相似文献   

15.
非线性液压阻尼悬架分级控制   总被引:2,自引:0,他引:2  
王庆丰  韩波 《汽车工程》1999,21(4):238-242
本文研究了主动阻尼悬架系统的分级控制策略,同时对各种影响系统性能参数的变化进行了研究,将分级控制的控制效果与最优阻尼控制作了比较。结果表明,结构简单的分级阻尼控制果接近最优阻尼控制。  相似文献   

16.
Most vehicle suspension systems use fixed passive components that offer a compromise in performance between sprung mass isolation, suspension travel, and tireroad contact force. Recently, systems with discretely adjustable dampers and air springs been added to production vehicles. Active and semi-active damping concepts for vehicle suspensions have also been studied theoretically and with physical prototypes. This paper examines the optimal performance comparisons of variable component suspensions, including active damping and full-state feedback, for “quartercar” heave models. Two and three dimensional optimizations are computed using performance indicators to find the component parameters (control gains) that provide “optimal” performance for statistically described roadway inputs. The effects of performance weighting and feedback configuration are examined. Active damping is shown to be mainly important for vehicle isolation. A passive vehicle suspension can control suspension travel and tire contact force nearly as well as a full state feedback control strategy.  相似文献   

17.
SUMMARY

Most vehicle suspension systems use fixed passive components that offer a compromise in performance between sprung mass isolation, suspension travel, and tireroad contact force. Recently, systems with discretely adjustable dampers and air springs been added to production vehicles. Active and semi-active damping concepts for vehicle suspensions have also been studied theoretically and with physical prototypes. This paper examines the optimal performance comparisons of variable component suspensions, including active damping and full-state feedback, for “quartercar” heave models. Two and three dimensional optimizations are computed using performance indicators to find the component parameters (control gains) that provide “optimal” performance for statistically described roadway inputs. The effects of performance weighting and feedback configuration are examined. Active damping is shown to be mainly important for vehicle isolation. A passive vehicle suspension can control suspension travel and tire contact force nearly as well as a full state feedback control strategy.  相似文献   

18.
A systematic methodology is applied in an effort to select optimum values for the suspension damping and stiffness parameters of two degrees of freedom quarter-car models, subjected to road excitation. First, models involving passive suspension dampers with constant or dual rate characteristics are considered. In addition, models with semi-active suspensions are also examined. Moreover, special emphasis is put in modeling possible temporary separations of the wheel from the ground. For all these models, appropriate methodologies are employed for capturing the motions of the vehicle resulting from passing with a constant horizontal speed over roads involving an isolated or a distributed geometric irregularity. The optimization process is based on three suitable performance criteria, related to ride comfort, suspension travel and road holding of the vehicle and yielding the most important suspension stiffness and damping parameters. As these criteria are conflicting, a suitable multi-objective optimization methodology is set up and applied. As a result, a series of diagrams with typical numerical results are presented and compared in both the corresponding objective spaces (in the form of classical Pareto fronts) and parameter spaces.  相似文献   

19.
A systematic methodology is applied in an effort to select optimum values for the suspension damping and stiffness parameters of two degrees of freedom quarter-car models, subjected to road excitation. First, models involving passive suspension dampers with constant or dual rate characteristics are considered. In addition, models with semi-active suspensions are also examined. Moreover, special emphasis is put in modeling possible temporary separations of the wheel from the ground. For all these models, appropriate methodologies are employed for capturing the motions of the vehicle resulting from passing with a constant horizontal speed over roads involving an isolated or a distributed geometric irregularity. The optimization process is based on three suitable performance criteria, related to ride comfort, suspension travel and road holding of the vehicle and yielding the most important suspension stiffness and damping parameters. As these criteria are conflicting, a suitable multi-objective optimization methodology is set up and applied. As a result, a series of diagrams with typical numerical results are presented and compared in both the corresponding objective spaces (in the form of classical Pareto fronts) and parameter spaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号