首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在摩托车多片油浴式离合器中,叠装在离合器中枢(中心架)内的摩擦片和摩擦铁片组成摩擦副,扭矩就是通过摩擦副的相互作用来传递的.摩擦副的摩擦因数与所传递的扭矩成正比关系,但摩擦因数受摩擦副工作状态的影响很大.  相似文献   

2.
汽车离合器是靠摩擦力来传递扭矩的,其摩擦力的大小取决于压紧力和摩擦表面状况。离合器摩擦片是以石棉为基础的摩擦材料,由石棉、金属丝、特种添加剂、粘接剂等热压而成,这种材料成本低,但工作温度不能过高,否则摩擦系数明显下降,相对滑动趋势加大,使磨损加剧,随着使用时间增长,压紧力逐渐变小、工作表面摩擦系数降低、零件磨损产生的摩擦力会减弱(或不均),不能可靠地传递扭矩而影响汽车的正常使用,因此,必须及时进行修复,以保证其技术状况完好,离合器常见故障如下。  相似文献   

3.
离合器是起步或变速时切断和连接发动机到变速器动力传动的装置,相当于电气线路中的开关,分为干式单片型和湿式多片型两种,摩托车多采用湿式多片型离合器。在摩托车湿式多片型离合器中,叠装在离合器大毂内的摩擦片和花键套上的摩擦铁片组成摩擦副,扭矩就是通过摩擦副的相互作用来传递的。现以GS125的离合器为例分析离合器的一次结合过程。GS125离合器由离合器大毂组合、离合器花键套、五片主动摩擦片、四片从动片、离合器弹簧盘等部分组成(结构见下图)。随着离合手把逐渐分开,弹簧压紧力逐渐释放,弹簧盘被逐渐压紧,摩擦力使得离合器花键套的转速上升,直到离合器大毂和花键套的转速一致时则完成了发动机扭矩的传递。离合器发冲的故障现象表现如下:摩托车起步刚挂  相似文献   

4.
<正>摩擦片的作用在于让发动机和变速器的速度同步,并传输发动机的扭矩。功能离合器摩擦片是飞轮和离合器压盘之间的摩擦介质,将发动机扭矩传递到变速器输入轴。摩擦片的作用在于让发动机和变速器的速度同步,并传输发动机的扭矩。其所用的材料不仅要满足耐磨的高技术要求,并且要提供恒定的摩擦系数和平滑地建立扭矩,此外还要符合目前的环保标准。所有  相似文献   

5.
湿式摩擦离合器摩擦片表面温升和油槽结构研究   总被引:2,自引:0,他引:2  
应用接触温度计算模型和热分析基本原理,研究了重型车辆湿式摩擦离合器摩擦片的温度分布和失效原因,分析和推导了简单、实用的摩擦片温度计算公式并得到试验验证。此外,介绍了从动摩擦片常见的表面油槽结构,分析了不同油槽结构对传递扭矩、摩擦片表面温度以及带排扭矩的影响。试验结果表明:双圆弧油槽综合性能较好,摩擦副摩擦因数适中,对带排扭矩影响小,且易于制造,最适合于重型车辆湿式摩擦离合器从动摩擦片使用。  相似文献   

6.
汽车离合器是靠摩擦力来传递扭矩的,其摩擦力的大小取决于压紧力和摩擦表而状况。离合器摩擦片是以石棉为基础的摩擦材料,由石棉、金属丝、特种添加剂等热压而成,这种材料成本低,但工作温度不能过高,否则摩擦系数明显下降,相对滑动趋势加大,使磨损加剧。随着使用时间增长,压紧力逐渐变小、  相似文献   

7.
LuK离合器及分离系统客户经常抱怨的问题离合器打滑摩擦系数太小,摩擦半径小,摩擦副不正确匹配,压紧力太低。  相似文献   

8.
<正>国内汽车离合器种类按传递扭矩的方式的不同,主要分为摩擦式、液力式、电磁式和综合式4种,其中摩擦式离合器应用最广泛。摩擦式离合器是一种依靠主从动部分之间的摩擦来传递动力且能分离的装置。它主要包括主动部分、从动部分、压紧机构和操纵机构等4部分。其工作原理图见图1。重型汽车由于承载量大、发动机传递的扭矩高,较多的采用单盘膜片弹簧离合器,我国针对膜片弹簧离合器的专门研究机构较少,在设计时大多数企业都凭借以往经验,在生产过  相似文献   

9.
刘忠华 《摩托车》2007,(3):54-56
离合器是主、从动部分在同轴上传递扭矩和旋转运动时,在不停机状态下实现分离和接合的装置。其主要用途就是传递或切断发动机的动力,有踏板车的自动离心蹄块式离合器(也称CVT),骑式车的手动摩擦片式离合器。本文针对骑式车手动摩擦片式离合器的拆装及维修保养作一介绍,供读者参考。  相似文献   

10.
一、离合器钢片总成的功用与使用要求在我国,目前多数汽车上使用的离合器,都用干摩擦片式结构。它主要靠主动盘和从动盘之间产生的压紧摩擦力来传递发动机扭矩。离合器的任务在于使发动机飞轮与汽车传动系得以平稳可靠地结合,保证汽车平稳起步和减少换档时的齿轮冲击。另外,离合器传递力矩的能力应是有限的;当汽车紧急制动,传动系受到很大的惯性负荷时,离合器的摩擦片能自动滑转,避免传动系零件因超载而损坏,故又能起到对传动系的保护作用。因此,现代汽车离合器的技术特征应能满足以下要求:1.能在任何行驶情况下,可靠地传递发动机的最大扭矩。为此,离合器的摩擦力  相似文献   

11.
维修档案     
助力车离合器与启动装置的故障诊断六、离合器的故障诊断离合器的功能是离与合,其故障自然是分离时分不开或分离得不彻底,要结合时却打滑等。 1.离合器打滑自动离合器长期使用后摩擦片瞻损严重,摩擦系数减小,导致结合时无法正常传递扭矩,应更换带摩擦片的飞铁块。若为干式离合器,因油污而打滑时,只需揩净,即可恢复。  相似文献   

12.
<正>摩托车离合器(见图1)在摩托车运行中起到平稳起步、传递动力、换挡平顺的作用,由此,离合器是集摩托车的安全性、使用性、舒适性于一体的零部件。离合器是起步或变速时切断和连接发动机到变速器动力传动的装置,相当于电气线路中的开关,分为干式单片型和湿式多片型2种,摩托车多采用湿式多片型离合器(见图2)。在摩托车湿式多片型离合器中,叠装在离合器大毂内的摩擦片和花键套上的摩擦铁片组成摩擦副,转矩通过摩擦副的  相似文献   

13.
文章针对并联式混合动力系统离合器扭矩安全监控策略进行了研究,制订了离合器扭矩监控分级管理策略。首先对违背整车安全的离合器非预期闭合场景进行分析,其次在离合器出现非预期传递扭矩时先将离合器扭矩控制指令卸除,之后根据离合器实际传递扭矩确定相应故障处理,如进行限制电压、零扭矩输出、关闭电机驱动级等,使控制器进入安全模式,最终保证离合器执行电机卸扭,整车处于安全可控状态。文章结合工程实例对离合器扭矩分级处理的效果进行了验证,实车试验结果表明,制定的离合器扭矩监控策略能够及时识别离合器非预期传扭,最大限度保证整车的驱动能力,同时防止车辆出现失控状态。  相似文献   

14.
为了实现自动离合器传递扭矩的直接控制,以自动手动变速器(AMT)车辆为研究对象,建立了车辆动力传动系统动力学模型。以发动机转速和离合器传递扭矩为元素构建状态向量,推导离散状态空间模型,设计了基于离散Kalman滤波的离合器传递扭矩估计算法,对车辆起步过程中的离合器扭矩进行了估计,通过与仿真设定值对比,对扭矩估计误差进行了分析。研究了采样周期变化(5~25 ms内)对离合器扭矩估计的影响。结果表明,扭矩估计误差随采样周期的增加而增大,在采样周期为10 ms时,扭矩估计精度下限为7.5%,所以该算法具有足够的精确性。  相似文献   

15.
针对原380DB离合器传递扭矩不足、离合器烧片等问题,设计了换代产品395DB离合器.简要介绍了设计的395DB离合器的结构特点,并对该离合器的传递扭矩、温升、滑磨功、踏板力进行了校核.与380DB相比,395DB离合器具有后备系数大、传递扭矩大等优点,更能满足重型车的需要.  相似文献   

16.
针对原380DB离合器传递扭矩不足、离合器烧片等问题,设计了换代产品395DB离合器。简要介绍了设汁的395DB离合器的结构特点,并对该离合器的传递扭矩、温升、滑磨功、踏板力进行了校核、与380DB相比,395DB离合器具有后备系数大、传递扭矩大等优点,更能满足重型车的需要。  相似文献   

17.
凸轮式单向离合器是摩擦式超越离合器的一种,利用偏心的凸轮楔块结构与主、从动部分的楔紧作用,单方向传递扭矩.它具有结构简单,承载能力强,适合于高转速,可靠性好,维修简便等特点,近年来越来越被人们所青睐.  相似文献   

18.
QD2745型同轴齿轮移动式起动机可以传递较大扭矩,在大功率柴油发动机上得到应用。其构造如图1所示。线路连接QD2745型起动机由复激式直流电动机、摩擦片式离合器、电磁控制装置等组成。其接  相似文献   

19.
<正>SX2190型汽车采用的是单片、干式、螺旋弹簧压紧,装有扭转减振器的离合器,该离合器摩擦片尺寸外径为420mm,厚度为10±0.3mm;压盘弹簧数量为36个,其操纵机构采用的是机械操纵气压助力式机构。干式离合器是靠主从动部分产生的摩擦作用力来传递扭矩  相似文献   

20.
离合器在工作过程中的摩擦表面温升是离合器传递扭矩的直接影响因素,研究离合器温升情况对于改善离合器控制和优化离合器设计都有着重要意义。但摩擦片工作表面封闭,表面温度往往难以准确测量,为解决离合器温度高精度测量的问题,使用国际上发展迅速的最新型分布式光纤传感技术,在设计的干式离合器摩擦特性测试台架上进行了测量试验。试验结果表明:与传统的热电偶插入式测量相比,分布式光纤测温能够得到离合器摩擦接触面的温度沿半径方向上的温度分布,为离合器表面温度场分析提供数据支持;同时,光纤测温能够实现在离合器系统内的各个部件的温度测温。通过对不同半径、不同工况、不同部件的温度变化情况的测量结果分析,离合器摩擦接触面的温度分布与半径有关,通常呈现半径越大温升越显著的特点;在单次接合分离的过程中,离合器摩擦片的2个摩擦接触表面的温升情况并不相同,靠近飞轮盘一侧的温度变化速率比靠近压盘一侧的要快。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号